Skip to main content

Thermal anomalies at volcanoes

  • Chapter
  • First Online:
Monitoring Volcanoes in the North Pacific

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

Thermal anomalies occur when a pixel in a satellite image shows a higher brightness temperature than is expected relative to its neighbors. Thermal anomalies have been observed over decades at volcanoes in satellite data. Such anomalies occur for many reasons, but at volcanoes this can be an indicator of volcanic activity or even a precursor to more explosive activity. This chapter focuses on what causes thermal anomalies at volcanoes, how they are detected, and how they are used to monitor volcanoes in the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M.; Glaze, L.; Sheridan, M. (1991). Monitoring Colima Volcano, Mexico, using satellite data, Bull. Volcanol., 53(7), 571–574, doi: 10.1007/BF00298157.

  • Abrams, M.; Realmuto, V.; Pieri, D.; Buongiorno, F. (1994). Mt. Etna lava flows analyzed with remote sensing, EOS, Trans. Am. Geophys. Union, 75(47), 545, doi: 10.1029/94EG02026.

  • Andres, R.J.; Rose, W.I. (1995). Description of thermal anomalies on two active Guatemalan volcanoes using Landsat Thematic Mapper imagery, Photogramm. Eng. Rem. Sens., 61, 775–782.

    Google Scholar 

  • Aries, S.E.; Harris, A.J.L.; Rothery, D.A. (2001). Remote infrared detection of the cessation of volcanic eruptions, Geophys. Res. Lett., 28(9), 1803–1806.

    Google Scholar 

  • Belousov, A.; Belousova, M. (2001). Eruptive process, impact and deposits of the 1996 and ancient basaltic phreatomagmatic eruptions in Karymskoye Lake, Kamchatka, Russia, in: J. White and N. Riggs (Eds.), Volcaniclastic Sedimentation in Lacustrine Settings, International Association of Sedimentologists Special Publication 30, pp. 235–260.

    Google Scholar 

  • Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. (1993). Remote sensing for active volcano monitoring in Barren Island, India, Photogramm. Eng. Rem. Sens., 59, 1293–1297.

    Google Scholar 

  • Bonneville, A.; Kerr, Y. (1987). A thermal forerunner of the 28th March 1983 Mt. Etna eruption from satellite thermal infrared data, J. Geodynamics, 7, 1–31.

    Google Scholar 

  • Bonneville, A.; Vasseur, G.; Kerr, Y. (1985) Satellite thermal infrared observations of Mt. Etna after the 17th March 1981 eruption, J. Volcanol. Geotherm. Res., 24, 293–313.

    Google Scholar 

  • Calder, E.S.; Harris, A.J.L.; Pea, P.; Pilger, E.; Flynn, L.P.; Fuentealba, G.; Moreno, H. (2004). Combined thermal and seismic analaysis of the Villarrica volcano lava lake, Chile, Revista Geológica de Chile, 31(2), 259–272, doi: 10.4067/S0716-0208200400020 0005.

  • Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. (2005). Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and survey with a handheld infrared camera, J. Geophys. Res., 110, B02201, doi: 10.1029/ 2004JB003129.

    Google Scholar 

  • Carn, S.A.; Oppenheimer, C. (2000). Remote monitoring of Indonesian volcanoes using satellite data from the Internet, Int. J. Rem. Sens., 21, 873–910.

    Google Scholar 

  • Coppola, D.; Piscopo, D.; Staudacher, T.; Cigolini, C. (2009). Lava discharge rate and effusive pattern at Piton de la Fournaise for MODIS data, J. Volcanol. Geotherm. Res., 184(12), 174–192.

    Google Scholar 

  • Crisp, J.; Kahle, A.B.; Abbott, E.A. (1990). Thermal infrared spectral character of Hawaiian basaltic glasses, J. Geophys. Res, 95(13), 21657–21669, doi: 10.1029/JB095iB13p21657.

  • Crowley, J.K.; Zimbelman, D.R. (1997). Mapping hydrothermally altered rocks on Mount Rainer, Washington, with airborne visible/infrared imaging spectrometer (AVIRIS) data, Geology, 25(6), 559–562, doi: 10.1130/0091-7613(1997)025<0559: MHAROM > 2.3.CO;2.

  • Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K. (1998). Satellite monitoring of remote volcanoes improves study efforts in Alaska, EOS, Trans. Am. Geophys. Union, 79(35), 413, 422–423.

    Google Scholar 

  • Dean, K.G.; Dehn, J.; Engle, K.; Izbekov, P.; Papp, K.; Patrick, M. (2002). Operational satellite monitoring of volcanoes at the Alaska Volcano Observatory, Adv. Env. Mon. Mod., 1(3), 70–97.

    Google Scholar 

  • Dean, K.G.; Dehn, J.; Papp, K.R.; Smith, S.; Izbekov, P.; Peterson, R.; Kearney, C.; Steffke, A. (2004). Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska, J. Volcanol. Geotherm. Res., 135, 51–73, doi: 10.1016/j.jvolgeores.2003.12.013.

  • Dehn, J.; Dean, K.G.; Engle, K. (2000). Thermal monitoring of North Pacific volcanoes from space, Geology, 28(8), 755–758.

    Google Scholar 

  • Dehn, J.; Dean, K.G.; Engle, K.; Izbekov, P. (2002). Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano, Bull. Volcanol., 64, 507–519, doi: 10.1007/s00445-002-0227-0.

  • Denniss, A.M.; Harris, A.J.L.; Rothery, D.A.; Francis, P.W.; Carlton, R.W. (1998). Satellite observations of the April 1993 eruption of Lascar volcano, Int. J. Rem. Sens., 19(5), 801-821 doi: 10.1080/014311698 215739.

  • Di Bello, G.; Filizzola, C.; Lacava, T.; Marchese, F.; Pergola, N.; Pietrapertosa, C.; Piscitelli, S.; Scaffidi, I.; Tramutoli, V. (2004). Robust satellite techniques for volcanic and seismic hazards monitoring, Ann. Geophys., 47(1), 49–64.

    Google Scholar 

  • Donegan, S.J.; Flynn, L.P. (2004). Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing-1 Advanced Land Imager over active lava flows, J. Volcanol. Geotherm. Res., 135(1/2), 105–126, doi: 10.1016/j.jvolgeores. 2003.12.010.

  • Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sens. Environ., 11(3), 221–229, doi: 10.1016 /0034-4257(81)90021-3.

    Google Scholar 

  • Ferriso, C.C.; Ludwig, C.B. (1965). An infrared band ratio technique for temperature determinations of hot gases, Applied Optics, 4(1), 47–52.

    Google Scholar 

  • Flynn, L.P.; Mouginis-Mark, P.J.; Horton, K.A. (1994). Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991, Bull. Volcanol., 56, 284–296.

    Google Scholar 

  • Flynn, L.P.; Wright, R.; Garbeil, H.; Harris, A.J.L.; Pilger, E. (2002). A global thermal alert using MODIS: Initial results from 2000–2001, Adv. Env. Mon. Mod, 1, 37–69.

    Google Scholar 

  • Francis, P.W.; Rothery, D.A. (1987). Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile, Geology, 15, 614–617.

    Google Scholar 

  • Francis, P.; Oppenheimer, C.; Stevenson, D. (1993). Endogenous growth of persistently active volcanoes, Nature, 366, 554–557.

    Google Scholar 

  • Galindo, I.; Dominguez, T. (2002). Near real-time satellite monitoring during the 1997–2000 activity of Volcan de Colima (Mexico) and its relationship with seismic monitoring, J. Volcanol. Geotherm. Res., 117, 91–104.

    Google Scholar 

  • Glaze, L.; Francis, P.W.; Rothery, D.A. (1989). Measuring thermal budgets of active volcanoes by satellite remote sensing, Nature, 338, 144–146.

    Google Scholar 

  • Gorshkov, G.S. (1959). Gigantic eruption of the Bezymianny Volcano, Bull. Volcanol., 20, 77–109.

    Google Scholar 

  • Gorshkov, G.S.; Dubik, Y.M. (1970) Gigantic directed blast at Shiveluch Volcano (Kamchatka), Bull. Volcanol, 34, 261–288.

    Google Scholar 

  • Gouhier, M.; Harris, A.J.L.; Calvari, S.; Labazuy, P.; Guéhenneux, Y.; Donnadieu, F.; Valade, S. (2012). Lava discharge during Etna’s 11–13 January 2011 fire fountain event tracked using MSG-SEVIRI, Bull. Volcanol, 4, 787–793, doi: 10.1007/s00445-011-0572-y.

  • Gupta, R.K.; Badarinath, K.V.S. (1993). Volcano monitoring using remote sensing data, Int. J. Rem. Sens., 14, 2907–2918.

    Google Scholar 

  • Harris, A.J.L. (2013). Thermal Remote Sensing of Active Volcanoes: A User’s Manual, Cambridge University Press, 728 pp.

    Google Scholar 

  • Harris, A.J.L.; Baloga, S.M. (2009). Lava discharge rates from satellite-measured heat flux, Geophys. Res. Lett., 36, doi: 10.1029/2009GL039717.

  • Harris, A.J.L.; Maciejewski, A.J.H. (2000). Thermal surveys of the Vulcano Fossa fumarole field 1994–1999: Evidence for fumarole migration and sealing, J. Volcanol. Geotherm. Res., 102, 119–147.

    Google Scholar 

  • Harris, A.J.L.; Neri, M. (2002). Volumetric observations during paroxysmal eruptions at Mount Etna: Pressurized drainage of a shallow chamber or pulsed supply?, J. Volcanol. Geotherm. Res., 116, 79–95.

    Google Scholar 

  • Harris, A.J.L.; Stevenson, D.S. (1997). Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data, J. Volcanol. Geotherm. Res., 76, 175–198.

    Google Scholar 

  • Harris, A.J.L.; Thornber, C.R. (1999). Complex effusive events at Kilauea as documented by the GOES satellite and remote video cameras, Bull. Volcanol., 61(6), 382–395, doi: 10.1007/s004450050280.

  • Harris, A.J.L.; Swabey, S.E.J.; Higgins, J. (1995). Automated thresholding of active lavas using AVHRR data. Int. J. Rem. Sens., 16(18), 3681–3686.

    Google Scholar 

  • Harris, A.J.L.; Butterworth, A.L.; Carlton, R.W.; Downey, T.; Miller, P.; Navarro, P.; Rothery, D.A. (1997a). Low cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus, Bull. Volcanol., 59, 49–64, doi: 10.1007/s004450050174.

  • Harris, A.J.L.; Blake, S.; Rothery, D.A.; Stevens, N.F. (1997b). A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real-time thermal volcano monitoring, Geophys. Res. Lett., 102, 7985–8003.

    Google Scholar 

  • Harris, A.J.L.; Keszthelyi, L.; Flynn, L.P.; Mouginis-Mark, P.J. (1997c). Chronology of the episode 54 eruption at Kilaeua Volcano, Hawaii, from GOES-9 satellite data, Geophys. Res. Lett., 24(24), 3281–3284.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. (1998). Calculation of lava effusion rates from Landsat TM data, Bull. Volcanol., 60, 52–71.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Rothery, D.A.; Oppenheimer, C.; Sherman, S.B. (1999). Mass flux measurements at active lava lakes: Implications for magma recycling, J. Geophys. Res., 104, 7117–7136.

    Google Scholar 

  • Harris, A.J.L.; Murray, J.B.; Aries, S.E.; Davies, M.A.; Flynn, L.P.; Wooster, M.J.; Wright, R.; Rothery, D.A. (2000). Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms, J. Volcanol. Geotherm. Res., 102, 237–270.

    Google Scholar 

  • Harris, A.J.L.; Pilger, E.; Flynn, L.P.; Garbeil, H.; Mouginis-Mark, P.J.; Kauahikaua, J.; Thornber, C. (2001). Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawai’i, using GOES satellite data, Int. J. Rem. Sens., 22(6), 945–967, doi: 10.1080/014311601300074487.

  • Harris, A.J.L.; Flynn, L.P.; Matías, O.; Rose, W.I. (2001). The thermal stealth flows of Santiaguito: Implications for the cooling and emplacement of dacitic block lava flows, Geol. Soc. Am. Bull., 114, 533–546.

    Google Scholar 

  • Harris, A.J.L.; Rose, WI.; Flynn, L.P. (2003). Temporal trends in lava dome extrusion at Santiaguito 1922–2000, Bull. Volcanol., 65, 77–89.

    Google Scholar 

  • Harris, A.J.L.; Flynn, L.P.; Matias, O.; Rose, W.I.; Cornejo, J. (2004). The evolution of an active silicic lava flow field: An ETM + perspective, J. Volcanol. Geotherm. Res., 135(1/2), 147–168.

    Google Scholar 

  • Harris, A.J.L.; Dehn, J.; Calvari, S. (2007). Lava effusion rate definition and measurement: A review, Bull. Volcanol., 70(1), 1–22, doi: 10.1007/s00445-007-0120-y.

  • Harris, A.J.L.; Lodato, L.; Dehn, J.; Spampinato, L. (2009). Thermal characterization of the Vulcano fumarole field, Bull. Volcanol, 71(4), 441–458.

    Google Scholar 

  • Harris, A.J.L.; Favalli, M.; Steffke, A.; Fornaciai, A.; Boschi, E. (2010). A relation between lava discharge rate, thermal insulation, and flow area set using lidar data, Geophys. Res. Lett, 37, doi: 10.1029/2010GL 044683.

  • Hellman, M.J.; Ramsey, M.S. (2004). Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing, J. Volcanol. Geotherm. Res., 135, 195–219, ISSN 0377-0273, 10.1016/j.jvolgeores.2003.12.012.

  • Higgins, J.; Harris, A.J.L. (1997). VAST: A program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data, Comput. Geosci., 23(6), 627–645.

    Google Scholar 

  • Hirn, B.; DiBartola, C.; Ferucci, F. (2008). Spaceborne monitoring 2000–2005 of the Pu’u O’o-Kupaianaha (Hawaii) eruption by synergetic merge of multispectral payloads ASTER and MODIS, Geosci. Rem. Sens, 46(10), 2848–2856, doi: 10.1109/TGRS.2008. 2001033.

  • Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K. (1994). Empalcement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea volcano, Hawaii, Geol. Soc. Am. Bull., 106, 351–370.

    Google Scholar 

  • Kahle, A.B.; Gillespie, A.R.; Abbott, E.A.; Abrams, M.J.; Walker, R.E.; Hoover, G.; Lockwood, J.P. (1988). Relative dating of Hawaiian lava flows using multispectral thermal infrared images: A new tool for geological mapping of young volcanic terranes, J. Geophys. Res, 93(12), 15239–15251, doi: 10.1029/ JB093iB12p15239.

    Google Scholar 

  • Kaneko, T.; Wooster, M.J. (1999). Landsat infrared analysis of fumarole activity at Unzen Volcano: Time-series comparison with gas and magma fluxes, J. Volcanol. Geotherm. Res., 89, 57–64.

    Google Scholar 

  • Kaneko, T.; Yasuda, A.; Ishimaru, T.; Takagi, M.; Wooster, M.J.; Kagiyama, T. (2002). Satellite hot spot monitoring of Japanese volcanoes: A prototype AVHRR-based system, Adv. Environ. Monit. Mod., 1(1), 125–133.

    Google Scholar 

  • Kervyn, M.; Harris, A.J.L.; Mbede, E.; Belton, F.; Jacobs, P.; Ernst, G.G.J. (2006). MODLEN: A semi-automated algorithm for monitoring small-scale thermal activity at Oldoinyo Lengai Volcano Tanzania. In: Quantitative Geology from Multiple Sources: IAMG Annual Conference, Liege, Belgium.

    Google Scholar 

  • Keszthelyi, L.; Harris, A.J.L.; Dehn, J. (2003). Observations of the effect of wind on the cooling of active lava flows, Geophys. Res. Lett., 30(19), 1989, doi: 10.1029/2003GL017994.

  • Koeppen, W.; Pilger, E.; Wright, R. (2011). Time series analysis of infrared satellite data for detecting thermal anomalies: A hybrid approach, Bull. Volcanol., 73(5), 577–593, doi: 10.1007/s00445-010-0427-y.

  • Lachlan-Cope, T.A.; Connolley, W.M.; Turner, J. (2001). The role of the non-axisymmetric Antarctic orography in forcing the observed pattern of variability of the Antarctic climate, Geophys. Res. Lett., 28, 4111–4114.

    Google Scholar 

  • Lee, T.F.; Tag, P.M. (1990). Improved detection of hot-spots using the AVHRR 3.7 mm channel, Bull. Am. Met. Soc., 71(12), 1722–1730.

    Google Scholar 

  • Lodato, L.; Spampinato, L.; Harris, A.; Calvari, S.; Dehn, J.; Patrick, M. (2007). The morphology and evolution of the Stromboli 2002–2003 lava flow field: An example of a basaltic flow field emplaced on a steep slope, Bull. Volcanol., 69(6), 661–679, doi: 10.1007/s00445-006-0101-6.

  • Lombardo, V.; Buongiorno, F. (2006). Lava flow thermal analysis using three infrared bands of remote-sensing imagery: A study case from Mount Etna 2001 eruption, Rem. Sens. Env, 101, 141–149.

    Google Scholar 

  • Macdonald, G.A. (1972). Volcanoes, Prentice-Hall, Englewood Cliffs, NJ, 510 pp.

    Google Scholar 

  • Matsushima, N.; Kazahaya, K.; Saito, G.; Shinohara, H. (2003). Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999, J. Volcanol. Geotherm. Res., 126, 285–301.

    Google Scholar 

  • Mouginis-Mark, P.J.; Snell, H.; Ellisor, R. (2000). GOES satellite and field observations of the 1998 eruption of Volcan Cerro Azul, Galapagos Islands, Bull. Volcanol, 62, 188–198.

    Google Scholar 

  • Oppenheimer, C. (1991). Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay eruption (Chile, 1989), J. Geophys. Res., 96, 21865–21878.

    Google Scholar 

  • Oppenheimer, C. (1993). Infrared surveillance of crater lakes using satellite data, J. Volcanol. Geotherm. Res, 55, 117–128.

    Google Scholar 

  • Oppenheimer, C. (1996). Crater lake heat losses estimated by remote sensing, Geophys. Res. Lett., 23, 1793–1796.

    Google Scholar 

  • Oppenheimer, C. (1997a). Remote sensing of the colour and temperature of volcanic lakes, Int. J. Rem. Sens., 18, 5–37.

    Google Scholar 

  • Oppenheimer, C. (1997b). Ramifications of the skin effect for crater lake heat budget analysis, J. Volcanol. Geotherm. Res., 75, 159–165.

    Google Scholar 

  • Oppenheimer, C. (1998). Satellite observation of active carbonatite volcanism at Ol Doinyo Lengai, Tanzania, Int. J. Rem. Sens., 19, 55–64.

    Google Scholar 

  • Oppenheimer, C.; Francis, P. (1998). Implications of longeval lava lakes for geomorphological and plutonic processes at Erta Ale volcano, north Afar, J. Volcanol. Geotherm. Res., 80, 101–111.

    Google Scholar 

  • Oppenheimer, C.; Rothery, D.A. (1991). Infrared monitoring of volcanoes by satellite, J. Geol. Soc. London, 148, 563–569.

    Google Scholar 

  • Oppenheimer, C.; Francis, P.W.; Rothery, D.A.; Carlton, R.W.T.; Glaze, L.S. (1993a). Infrared image analysis of volcanic thermal features: Lascar Volcano, Chile, 1984–1992, J. Geophys. Res, 98(B3), 4269–4286, doi: 10.1029/92JB02134.

  • Oppenheimer, C.; Rothery, D.A.; Pieri, D.C.; Abrams, M.; Carrere, V. (1993b). Analysis of Airborne Visible/Infrared Imaging Spectrometer data of volcanic hot spots, Int. J. Rem. Sens., 14, 2919–2934.

    Google Scholar 

  • Patrick, M.R. (2002). Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with AVHRR thermal imagery, M.S. thesis, University of Alaska Fairbanks, Fairbanks, 141 pp.

    Google Scholar 

  • Patrick, M.R.; Dehn, J.; Dean, K. (2005a). Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with advanced very high resolution radiometer thermal imagery, J. Geophys. Res., 110(B02210), doi: 10.1029/2003/ JB002538.

  • Patrick, M.R.; Smellie, J.L.; Harris, A.J.L.; Wright, R.; Dean, K.G.; Izbekov, P.; Garbeil, H.; Pilger, E. (2005b). First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands, Bull. Volcanol, 67, 412–422.

    Google Scholar 

  • Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. (2007). Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video, Bull. Volcanol., 69(7), 769–784, doi: 10.1007/s00445-006-0107-0.

  • Pergola, N.; Marchese, F.; Tramutoli, V. (2004). Automated detection of thermal features of active volcanoes by means of infrared AVHRR records, Rem. Sens. Environ., 93, 311–327.

    Google Scholar 

  • Pergola, N.; Marchese, F.; Tramutoli, V.; Filizzola, C.; Ciampa, M. (2008). Advanced satellite technique for volcanic activity monitoring and early warning, Ann. Geophys, 51(1), 287–301.

    Google Scholar 

  • Pergola, N.; D’Angelo, G.; Lisi, M.; Marchese, F.; Mazzeo, G.;Tramutoli, V. (2009). Time domain analysis of robust satellite techniques (RST) for near real-time monitoring of active volcanoes and thermal precursor identification, Phys. Chem. Earth, 34(6/7), 380–385, ISSN 1474-7065, 10.1016/j.pce.2008.07. 015.

  • Pieri, D.C.; Baloga, S.M. (1986). Eruption rate, area, and length relationships for some Hawaiian lava flows, J. Volcanol. Geotherm. Res., 30, 29–45.

    Google Scholar 

  • Pieri, D.C.; Glaze, L.S.; Abrams, M.J. (1990). Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna, Geology, 18, 1018–1022.

    Google Scholar 

  • Ramsey, M.S.; Christensen, P.R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra, J. Geophys. Res., 103, 577–596.

    Google Scholar 

  • Ramsey, M.; Dehn, J. (2004). Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: The integration of high-resolution ASTER data into near real-time monitoring using AVHRR, J. Volcanol. Geotherm. Res, 135, 127–146, doi: 10.1016/j. jvolgeores.2003.12.014.

    Google Scholar 

  • Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C. (1992). Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii, Bull. Volcanol., 55(1/2), 33–44, doi: 10.1029/JB095iB13p21657.

  • Reddy, C.S.S.; Bhattacharya, A.; Srivastava, S.K. (1993). Night-time TM short wavelength infrared data analysis of Barren Island Volcano, South Andaman, India, Int. J. Rem. Sens., 14, 783–787.

    Google Scholar 

  • Roach, A.L.; Benoit, J.P.; Dean, K.G.; McNutt, S.R. (2001). The combined use of satellite and seismic monitoring during the 1996 eruption of Pavlof Volcano, Alaska, Bull. Volcanol., 62(6/7), 385–399, doi: 10.1007/s004450000114.

  • Rothery, D.A.; Francis, P.W.; Wood, C.A. (1988). Volcano monitoring using short wavelength infrared data from satellites, J. Geophys. Res., 93, 7993–8008, doi: 10.1029/JB093iB07p07993.

  • Rothery, D.A.; Coppola, D.; Saunders, C. (2005). Analysis of volcanic activity patterns using MODIS thermal alerts, Bull, Volcanol., 67(6), 539–556.

    Google Scholar 

  • Schneider, D.J.; Dean, K.G.; Dehn, J.; Miller, T.P.; Kirianov, V.Yu. (2000). Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997, in: P.J. Mouginis-Mark, J.A. Crisp, and J.H. Fink (Eds.), Remote Sensing of Active Volcanism, American Geophys. Union Geophysical Monograph 116, Washington D.C., pp. 65–86.

    Google Scholar 

  • Scorer, R.S. (1986). Cloud Investigation by Satellite, Ellis Horwood, Chichester, U.K., 314 pp.

    Google Scholar 

  • Sekioka, M.; Yuhara, K. (1974). Heat flux estimation in geothermal areas based on the heat balance of the ground surface, J. Geophys. Res, 79(14), 2053–2058, doi: 10.1029/JB079i014p02053.

  • Steffke, A.M.; Harris, A.J.L. (2011). A review of algorithms for detecting volcanic hot spots in satellite infrared data. Bull. Volcanol., 73, 1109–1137, doi: 10.1007/s00445-011-0487-7.

  • Steffke, A.M.; Harris, A.J.L.; Burton, M.; Caltabiano, T.; Salerno, G.G. (2011). Coupled use of COSPEC and satellite measurements to define the volumetric balance during effusive eruptions at Mt. Etna, Italy, J. Volcanol. Geotherm. Res., 205, 47–53, doi: 10.1016/ j.jvolgeores.2010.06.004.

    Google Scholar 

  • Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L. et al. (2002). The CloudSat mission and the A-Train, Bull. Am. Met. Soc, 93(12), 1771–1790, doi: 10.1175/BANMS-83-12-1771.

  • Tramutoli, V. (1998). Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications, in: G. Cecchi and E. Zilioli (Eds.), Earth Surface Remote Sensing, II: Proceedings of SPIE, 3496, pp. 101–113.

    Google Scholar 

  • Urai, M. (2000). Volcano monitoring with Landsat TM short-wave infrared bands: The 1990–1994 eruption of Unzen Volcano, Japan, Int. J. Rem. Sens., 21(5), 861–872, doi: 10.1080/014311600210335.

  • van Manen, S.M.; Dehn, J. (2009). Satellite remote sensing of thermal activity at Bezymianny and Kliuchevskoi from 1993 to 1998, Geology, 37, 983–986, doi: 10,1130/G30179A.1.

    Google Scholar 

  • van Manen, S.M.; Dehn, J.; West, M.E.; Blake, S.; Rothery, D.A. (2010a). The 2006 eruption of Augustine Volcano: Combined analyses of thermal satellite data and reduced displacement, in: J.A. Power, M.L. Coombs, and J.T. Freymueller (Eds.), The 2006 Eruption of Augustine Volcano, Alaska, U.S. Geological Survey Professional Paper 1769, pp. 553–567.

    Google Scholar 

  • van Manen, S.M.; Dehn, J.; Blake, S. (2010b). Satellite thermal observation of the Bezymianny lava dome 1993–2008: Precursory activity, large explosions and dome growth, J. Geophys. Res., 115(B08205), doi: 10.1029/2009JB006966.

  • van Manen, S.M.; Blake, S.; Dehn, J. (2011). A near realtime dual-band-spatial approach to determine the source of increased radiance from closely spaced active volcanoes in coarse resolution satellite data, Int. J. Rem. Sens, 32(21), 6055–6069, doi: 10.1080/ 01431161.2010.498452.

    Google Scholar 

  • Webley, P.W.; Wooster, M.J.; Strauch, W.; Saballos, J.A.; Dill, K.; Stephenson, P.; Stephenson, J.; Escobar, W.R.; Matias, O. (2008). Experiences from real-time satellite-based volcano monitoring in Central America: Case studies at Fuego, Guatemala, Int. J. Rem. Sens, 29(22), 6618–6644.

    Google Scholar 

  • Wiesnet, D.R.; D’Aguanno, J. (1982). Thermal imagery of Mount Erebus from the NOAA-6 satellite, Antarctic J. U.S., 17, 32–34.

    Google Scholar 

  • Williams, R.S.; Friedman, J.D. (1970). Satellite observation of effusive volcanism, British Interplanetary Soc. J, 23. 441–450.

    Google Scholar 

  • Williams, R.S.; Friedman, J.D.; Thorarinsson, S.; Sigurgiersson, T.; Palmason, G. (1968). Analysis of the 1966 Imagery of Surtsey Iceland, Surtsey Research Progress Report iv, Surtsey Research Society, Reykjavik, pp. 177–192.

    Google Scholar 

  • Wooster, M.J. (2001). Long-term infrared surveillance of Lascar Volcano: Contrasting activity cycles and cooling pyroclastics, Geophys. Res. Lett., 28, 847–850.

    Google Scholar 

  • Wooster, M.J.; Kaneko, T. (2001). Testing the accuracy of solar reflected radiation corrections applied during satellite thermal analysis of active volcanoes, J. Geophys. Res., 106, 13381–13394.

    Google Scholar 

  • Wooster, M.J.; Rothery, D.A. (1997). Thermal monitoring of Lascar Volcano, northern Chile, using infrared data at high temporal resolution: A 1992 to 1995 time-series using the along track scanning radiometer, Bull. Volcanol., 58, 566–579.

    Google Scholar 

  • Wooster, M.J.; Rothery, D.A. (2002). A review of volcano surveillance applications using the ATSR instrument series, Adv. Environ. Mon. Mod., 13, 97–123.

    Google Scholar 

  • Wooster, M.J.; Wright, R.; Blake, S.; Rothery, D.A. (1997). Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava, Geophys. Res. Lett., 24, 3277–3280.

    Google Scholar 

  • Wooster, M.J.; Rothery, D.A.; Sear, C.B.; Carlton, R.W. (1998). Monitoring the development of active lava domes using data from the ERS-1 Along Track Scanning Radiometer, Adv. Space Res., 21, 501–505.

    Google Scholar 

  • Wooster, M.J.; Kaneko, T.; Nakada, S.; Shimizu, H. (2000). Discrimination of lava dome activity styles using satellite-derived thermal structures, J. Volcanol. Geotherm. Res., 102, 97–118.

    Google Scholar 

  • Wright, R.; Flynn, L.P. (2003). On the retrieval of lava-flow surface temperatures from infrared satellite data, Geology, 31(10), 893–896.

    Google Scholar 

  • Wright, R.; Pilger, E. (2008). Satellite observations reveal little inter-annual variability in the radiant flux from the Mount Erebus lava lake, J. Volcanol. Geotherm. Res., 177(3), 687–694.

    Google Scholar 

  • Wright, R.; Rothery, D.A.; Blake, S.; Harris, A.J.L.; Pieri, D.C. (1999). Simulating the response of the EOS Terra ASTER sensor to high-temperature volcanic targets, Geophys. Res. Lett., 26(12), 1773–1776.

    Google Scholar 

  • Wright, R.; Blake, S.; Harris, A.J.L.; Rothery, D.A. (2001a). A simple explanation for the space-based calculation of lava eruption rates, Earth Planet. Sci. Lett., 192, 223–233.

    Google Scholar 

  • Wright, R.; Flynn, L.P.; Harris, A.J.L. (2001b). The evolution of lava flowfields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM + , Bull. Volcanol., 63, 1–7.

    Google Scholar 

  • Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. (2002a). Automated volcanic eruption detection using MODIS, Rem. Sens. Environ., 82, 135–155.

    Google Scholar 

  • Wright, R.; De La Cruz-Reyna, S.; Harris, A.J.L.; Flynn, L.P.; Gomez-Palacios, J.J. (2002b). Infrared satellite monitoring at Popocatepetl: Explosions, exhalations, and cycles of dome growth, J. Geophys. Res., 107, 2153–2169, doi: 10.1029/2000JB000125.

  • Wright, R.; Garbeil, H.; Davies, A.G. (2010). Cooling rate of some active lavas determined using an orbital imaging spectrometer, J. Geophys. Res., 115(B06205), doi: 10.1029/2009JB006536.

  • Wright, R.; Glaze, L.; Baloga, S.M. (2011). Constraints on determining the eruption style and composition of terrestrial lavas from space, Geology, 39, 1127–1130.

    Google Scholar 

  • Yuhaniz, S.S.; Vladimirova, T. (2009). An onboard automatic change detection system for disaster monitoring, Int. J. Rem. Sens., 30(23), 6129–6139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Dehn .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dehn, J., Harris, A.J.L. (2015). Thermal anomalies at volcanoes. In: Monitoring Volcanoes in the North Pacific. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68750-4_3

Download citation

Publish with us

Policies and ethics