Skip to main content

Computational Probability for Systems Biology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5054))

Abstract

Stochastic models of biological networks properly take the randomness of molecular dynamics in living cells into account. Numerical solution approaches inspired by computational methods from applied probability can efficiently yield accurate results and have significant advantages compared to stochastic simulation. Examples for the success of non-simulative numerical analysis techniques in systems biology confirm the enormous potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  2. Bartholomay, A.F.: A Stochastic Approach to Chemical Reaction Kinetics. Phd thesis, Harvard University (1957)

    Google Scholar 

  3. Benoit, A., Fernandes, P., Plateau, B., Stewart, W.J.: The PEPS software tool. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 98–115. Springer, Heidelberg (2003)

    Google Scholar 

  4. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  5. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  6. Bobbio, A., Trivedi, K.S.: An aggregation technique for the transient analysis of stiff Markov chains. IEEE Transactions on Computers C-35(9), 803–814 (1986)

    Article  Google Scholar 

  7. Bremaud, P.: Markov Chains. Springer, Heidelberg (1998)

    Google Scholar 

  8. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. Journal on Computing 12(3), 203–222 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Buchholz, P., Kemper, P.: A toolbox for the analysis of discrete event dynamic systems. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 483–486. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Buchholz, P., Kemper, P.: Efficient computation and representation of large reachability sets for composed automata. Discrete Event Dynamic Systems 12(3), 265–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Busch, H., Sandmann, W., Wolf, V.: A numerical aggregation algorithm for the enzyme-catalyzed substrate conversion. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 298–311. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Cao, Y., Gillespie, D.T., Petzold, L.R.: Accelerated stochastic simulation of the stiff enzyme-substrate reaction. Journal of Chemical Physics 123(14), 144917 (2005)

    Article  Google Scholar 

  13. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. Journal of Chemical Physics 122, 14116 (2005)

    Article  Google Scholar 

  14. Ciardo, G., Miner, A.: SMART: The stochastic model checking analyzer for reliability and timing. In: Proceedings of the 1st International Conference on Quantitative Evaluation of Systems, pp. 338–339 (2004)

    Google Scholar 

  15. de Souza e Silva, E., Gail, R.: Transient solutions for Markov chains. In: Grassmann, W.K. (ed.) Computational Probability, ch. 3, pp. 43–79. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  16. Delbrück, M.: Statistical fluctuations in autocatalytic reactions. Journal of Chemical Physics 8, 120–124 (1940)

    Article  Google Scholar 

  17. Elowitz, M.B., Levine, M.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  18. Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)

    Article  Google Scholar 

  19. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor-vector multiplications in stochastic automata networks. Journal of the ACM 45(3), 381–414 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Communications of the ACM 31(4), 440–445 (1988)

    Article  MathSciNet  Google Scholar 

  21. Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  22. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  23. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  24. Grassmann, W.K.: Computational methods in probability theory. In: Heyman, D.P., Sobel, M.J. (eds.) Stochastic Models. Handbooks in Operations Research and Management Science, vol. 2, ch. 5, pp. 199–254. Elsevier, Amsterdam (1990)

    Google Scholar 

  25. Grassmann, W.K. (ed.): Computational Probability. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  26. Gross, D., Miller, D.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Operations Research 32(2), 926–944 (1984)

    Article  MathSciNet  Google Scholar 

  27. Hordijk, A., Iglehart, D.L., Schassberger, R.: Discrete time methods for simulating continuous time Markov chains. Advances in Applied Probability 8, 772–788 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuarietidskrift 36, 87–91 (1953)

    Google Scholar 

  29. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  30. Kierzek, A., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry 276(11), 8165–8172 (2001)

    Article  Google Scholar 

  31. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. Journal of Chemical Physics 57(7), 2976–2978 (1972)

    Article  Google Scholar 

  32. Langville, A.N., Stewart, W.J.: The Kronecker product and stochastic automata networks. Journal of Computational and Applied Mathematics 167(2), 429–447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science (PNAS) USA 94, 814–819 (1997)

    Article  Google Scholar 

  34. McAdams, H.H., Arkin, A.: It’s a noisy business? Trends in Genetics 15(2), 65–69 (1999)

    Article  Google Scholar 

  35. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Review 20(4), 801–836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oppenheim, I., Shuler, K.E., Weiss, G.H.: Stochastic and deterministic formulation of chemical rate equations. Journal of Chemical Physics 50(1), 460–466 (1969)

    Article  Google Scholar 

  38. Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004)

    Article  Google Scholar 

  39. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. In: Proceedings of the Sigmetrics Conference on Measurement and Modeling of Computer Systems, pp. 147–154 (1985)

    Google Scholar 

  40. Plateau, B., Stewart, W.J.: Stochastic automata networks. In: Grassmann, W.K. (ed.) Computational Probability, ch. 5, pp. 113–152. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  41. Sandmann, W.: Stochastic simulation of biochemical systems via discrete-time conversion. In: Proceedings of the 2nd Conference on Foundations of Systems Biology in Engineering, pp. 267–272. Fraunhofer IRB Verlag (2007)

    Google Scholar 

  42. Sandmann, W.: Discrete-time stochastic modeling and simulation of biochemical networks. Computational Biology and Chemistry (to appear, 2008)

    Google Scholar 

  43. Singer, K.: Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. Journal of the Royal Statistical Society, Series B 15(1), 92–106 (1953)

    MATH  Google Scholar 

  44. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  45. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1995)

    Google Scholar 

  46. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Science (PNAS) USA 99(20), 12795–12800 (2002)

    Article  Google Scholar 

  47. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)

    Article  MATH  Google Scholar 

  48. Van Loan, C.F.: The ubiquitous Kronecker product. Journal of Computational and Applied Mathematics 123, 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

  50. Wolf, V.: Modelling of biochemical reactions by stochastic automata networks. Electronic Notes in Theoretical Computer Science 171(2), 197–208 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jasmin Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandmann, W., Wolf, V. (2008). Computational Probability for Systems Biology. In: Fisher, J. (eds) Formal Methods in Systems Biology. FMSB 2008. Lecture Notes in Computer Science(), vol 5054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68413-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68413-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68410-7

  • Online ISBN: 978-3-540-68413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics