Skip to main content

Hemidesmosomes: Molecular Organization and Their Importance for Cell Adhesion and Disease

  • Chapter
Cell Adhesion

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 165))

Abstract

In the skin, basal epithelial cells constantly divide to renew the epidermis. The newly formed epithelial cells then differentiate in a process called keratinization, ultimately leading to the death of these cells and a pile-up of cell material containing vast amounts of keratins. The basal keratinocytes in skin are attached to their underlying basement membrane via specialized adhesion complexes termed hemidesmosomes (HDs). These complexes ascertain stable adhesion of the epidermis to the dermis, and mutations in components of these complexes often result in tissue fragility and blistering of the skin. In this review, we will describe the various hemidesmosomal proteins in detail as well as, briefly, the protein families to which they belong. Specifically, we will report the protein-protein interactions involved in the assembly of hemidesmosomes and their molecular organization. Some signaling pathways involving primarily the α6β4 integrin will be discussed, since they appear to profoundly modulate the assembly and function of hemidesmosomes. Furthermore, the importance of these hemidesmosomal components for the maintenance of tissue homeostasis and their involvement in various clinical disorders will be emphasized. Finally, we will present a model for the assembly of HDs, based on our present knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberdam D, Galliano MF, Vailly J, Pulkkinen L, Bonifas J, Christiano AM, Tryggvason K, Uitto J, Epstein EH, Ortonne JP (1994) Herlitzs junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the γ2 subunit of nicein/kalinin (LAMININ-5). Nat Genet 6:299–304

    CAS  PubMed  Google Scholar 

  • Aho S, Uitto J (1997) Basement membrane zone protein-protein interactions disclosed by yeast two-hybrid system. J Invest Dermatol 108:546a

    Google Scholar 

  • Aho S, Uitto J (1998) Direct interaction between the intracellular domains of bullous pemphigoid antigen 2 (BP180) and β4 integrin, hemidesmosomal components of basal keratinocytes. Biochem Biophys Res Commun 243:694–699

    CAS  PubMed  Google Scholar 

  • Andra K, Lassmann H, Bittner R, Shorny S, Fassler R, Propst F, Wiche G (1997) Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev 11:3143–3156

    CAS  PubMed  Google Scholar 

  • Andra K, Nikolic B, Stocher M, Drenckhahn D, Wiche G (1998) Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev 12:3442–3451

    CAS  PubMed  Google Scholar 

  • Andra K, Kornacker I, Jorgl A, Zorer M, Spazierer D, Fuchs P, Fischer I, Wiche G (2003) Plectin-isoform-specific rescue of hemidesmosomal defects in plectin (−/−) keratinocytes. J Invest Dermatol 120:189–197

    CAS  PubMed  Google Scholar 

  • Armstrong DK, McKenna KE, Purkis PE, Green KJ, Eady RA, Leigh IM, Hughes AE (1999) Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet 8:143–148

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR, Mercurio AM (1999a) p53 inhibits α 6β4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 147:1063–1072

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Marchetti A, Falcioni R, Soddu S, Mercurio AM (1999b) Activation of p53 function in carcinoma cells by the α6β4 integrin. J Biol Chem 274:20733–20737

    CAS  PubMed  Google Scholar 

  • Balding SD, Diaz LA, Giudice GJ (1997) A recombinant form of the human BP180 ectodomain forms a collagen-like homotrimeric complex. Biochemistry 36:8821–8830

    CAS  PubMed  Google Scholar 

  • Baribault H, Price J, Miyai K, Oshima RG (1993) Mid-gestational lethality in mice lacking keratin 8. Genes Dev 7:1191–1202

    CAS  PubMed  Google Scholar 

  • Bernier G, Mathieu M, De Repentigny Y, Vidal SM, Kothary R (1996) Cloning and characterization of mouse ACF7, a novel member of the dystonin subfamily of actin binding proteins. Genomics 38:19–29

    CAS  PubMed  Google Scholar 

  • Bonifas JM, Rothman AL, Epstein EH Jr (1991) Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 254:1202–1205

    CAS  PubMed  Google Scholar 

  • Bornslaeger EA, Corcoran CM, Stappenbeck TS, Green KJ (1996) Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol 134:985–1001

    CAS  PubMed  Google Scholar 

  • Bornslaeger EA, Godsel LM, Corcoran CM, Park JK, Hatzfeld M, Kowalczyk AP, Green KJ (2001) Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell-cell borders. J Cell Sci 114:727–738

    CAS  PubMed  Google Scholar 

  • Borradori L, Sonnenberg A (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 112:411–418

    CAS  PubMed  Google Scholar 

  • Borradori L, Koch PJ, Niessen CM, Erkeland S, van Leusden MR, Sonnenberg A (1997) The localization of bullous pemphigoid antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the β4 integrin subunit. J Cell Biol 136:1333–1347

    CAS  PubMed  Google Scholar 

  • Borradori L, Chavanas S, Schaapveld RQ, Gagnoux-Palacios L, Calafat J, Meneguzzi G, Sonnenberg A (1998) Role of the bullous pemphigoid antigen 180 (BP180) in the assemblyof hemidesmosomes and cell adhesion-reexpression of BP180 in generalized atrophic benign epidermolysis bullosa keratinocytes. Exp Cell Res 239:463–476

    CAS  PubMed  Google Scholar 

  • Brown A, Dalpe G, Mathieu M, Kothary R (1995a) Cloning and characterization of the neural isoforms of human dystonin. Genomics 29:777–780

    CAS  PubMed  Google Scholar 

  • Brown A, Bernier G, Mathieu M, Rossant J, Kothary R (1995b) The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat Genet 10:301–306

    CAS  PubMed  Google Scholar 

  • Brown TA, Gil SG, Sybert VP, Lestringant GG, Tadini G, Caputo R, Carter WG (1996) Defective integrin α6β4 expression in the skin of patients with junctional epidermolysis bullosa and pyloric atresia. J Invest Dermatol 107:384–391

    CAS  PubMed  Google Scholar 

  • Burgeson RE, Christiano AM (1997) The dermal-epidermal junction. Curr Opin Cell Biol 9:651–658

    CAS  PubMed  Google Scholar 

  • Byers TJ, Beggs AH, McNally EM, Kunkel LM (1995) Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure. FEBS Lett 368:500–504

    CAS  PubMed  Google Scholar 

  • Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes. Cell 65:599–610

    CAS  PubMed  Google Scholar 

  • Castresana J, Saraste M (1995) Does Vav bind to F-actin through a CH domain? FEBS Lett 374:149–151

    CAS  PubMed  Google Scholar 

  • Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE (1996) Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 132:1189–1198

    CAS  PubMed  Google Scholar 

  • Chao C, Lotz MM, Clarke AC, Mercurio AM (1996) A function for the integrin α6β4 in the invasive properties of colorectal carcinoma cells. Cancer Res 56:4811–4819

    CAS  PubMed  Google Scholar 

  • Chavanas S, Pulkkinen L, Gache Y, Smith FJ, McLean WH, Uitto J, Ortonne JP, Meneguzzi G (1996) A homozygous nonsense mutation in the PLEC1 gene in patients with epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest 98:2196–2200

    CAS  PubMed  Google Scholar 

  • Choi HJ, Park-Snyder S, Pascoe LT, Green KJ, Weis WI (2002) Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nat Struct Biol 9:612–620

    CAS  PubMed  Google Scholar 

  • Christiano AM, Uitto J (1996) Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa. Exp Dermatol 5:1–11

    CAS  PubMed  Google Scholar 

  • Clarke AS, Lotz MM, Mercurio AM (1994) A novel structural variant of the human β4 integrin cDNA. Cell Adhes Commun 2:1–6

    CAS  PubMed  Google Scholar 

  • Clubb BH, Chou YH, Herrmann H, Svitkina TM, Borisy GG, Goldman RD (2000) The 300-kDa intermediate filament-associated protein (IFAP300) is a hamster plectin ortholog. Biochem Biophys Res Commun 273:183–187

    CAS  PubMed  Google Scholar 

  • Cooper HM, Tamura RN, Quaranta V (1991) The major laminin receptor of mouse embryonic stem cells is a novel isoform of the α6β1 integrin. J Cell Biol 115:843–850

    CAS  PubMed  Google Scholar 

  • Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E (1991) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66:1301–1311

    CAS  PubMed  Google Scholar 

  • Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y, Khavari PA (2003) NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421:639–643

    CAS  PubMed  Google Scholar 

  • de Pereda JM, Wiche G, Liddington RC (1999) Crystal structure of a tandem pair of fibronectin type III domains from the cytoplasmic tail of integrin α6β4. EMBO J 18:4087–4095

    PubMed  Google Scholar 

  • Delwel GO, de Melker AA, Hogervorst F, Jaspars LH, Fles DL, Kuikman I, Lindblom A, Paulsson M, Timpl R, Sonnenberg A (1994) Distinct and overlapping ligand specificities of the α3Aβ1 and α6Aβ1 integrins: recognition of laminin isoforms. Mol Biol Cell 5:203–215

    CAS  PubMed  Google Scholar 

  • Delwel GO, Kuikman I, Sonnenberg A (1995) An alternatively spliced exon in the extracellular domain of the human α6 integrin subunit—functional analysis of the α6 integrin variants. Cell Adhes Commun 3:143–161

    CAS  PubMed  Google Scholar 

  • DiColandrea T, Karashima T, Maatta A, Watt FM (2000) Subcellular distribution of envoplakin and periplakin: insights into their role as precursors of the epidermal cornified envelope. J Cell Biol 151:573–586

    CAS  PubMed  Google Scholar 

  • Dowling J, Yu QC, Fuchs E (1996) β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol 134:559–572

    CAS  PubMed  Google Scholar 

  • Eady RA (1994) The hemidesmosome: a target in auto-immune bullous disease. Dermatology 189Suppl 1:38–41

    PubMed  Google Scholar 

  • Eger A, Stockinger A, Wiche G, Foisner R (1997) Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. J Cell Sci 110:1307–1316

    CAS  PubMed  Google Scholar 

  • Elliott CE, Becker B, Oehler S, Castanon MJ, Hauptmann R, Wiche G (1997) Plectin transcript diversity: identification and tissue distribution of variants with distinct first coding exons and rodless isoforms. Genomics 42:115–125

    CAS  PubMed  Google Scholar 

  • Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, Sariola H, Tryggvason K (1998) Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem 273:4530–4538

    CAS  PubMed  Google Scholar 

  • Favre B, Fontao L, Koster J, Shafaatian R, Jaunin F, Saurat JH, Sonnenberg A, Borradori L (2001) The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin β4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. J Biol Chem 276:32427–32436

    CAS  PubMed  Google Scholar 

  • Ferguson BM, Brockdorff N, Formstone E, Ngyuen T, Kronmiller JE, Zonana J (1997) Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum Mol Genet 6:1589–1594

    CAS  PubMed  Google Scholar 

  • Foisner R, Wiche G (1987) Structure and hydrodynamic properties of plectin molecules. J Mol Biol 198:515–531

    CAS  PubMed  Google Scholar 

  • Foisner R, Leichtfried FE, Herrmann H, Small JV, Lawson D, Wiche G (1988) Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J Cell Biol 106:723–733

    CAS  PubMed  Google Scholar 

  • Fontao L, Dirrig S, Owaribe K, Kedinger M, Launay JF (1997) Polarized expression of HD1: relationship with the cytoskeleton in cultured human colonic carcinoma cells. Exp Cell Res 231:319–327

    CAS  PubMed  Google Scholar 

  • Fontao L, Geerts D, Kuikman I, Koster J, Kramer D, Sonnenberg A (2001) The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin. J Cell Sci 114:2065–2076

    CAS  PubMed  Google Scholar 

  • Fontao L, Favre B, Riou S, Geerts D, Jaunin F, Saurat JH, Green KJ, Sonnenberg A, Borradori L (2003) Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol Biol Cell 14:1978–1992

    CAS  PubMed  Google Scholar 

  • Franke WW, Schmid E, Grund C, Muller H, Engelbrecht I, Moll R, Stadler J, Jarasch ED (1981) Antibodies to high molecular weight polypeptides of desmosomes: specific localization of a class of junctional proteins in cells and tissue. Differentiation 20:217–241

    CAS  PubMed  Google Scholar 

  • Franzke CW, Tasanen K, Schacke H, Zhou Z, Tryggvason K, Mauch C, Zigrino P, Sunnarborg S, Lee DC, Fahrenholz F, Bruckner-Tuderman L (2002) Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J 21:5026–5035

    CAS  PubMed  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  • Fuchs P, Zorer M, Rezniczek GA, Spazierer D, Oehler S, Castanon MJ, Hauptmann R, Wiche G (1999) Unusual 5′ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum Mol Genet 8:2461–2472

    CAS  PubMed  Google Scholar 

  • Fujiwara S, Takeo N, Otani Y, Parry DA, Kunimatsu M, Lu R, Sasaki M, Matsuo N, Khaleduzzaman M, Yoshioka H (2001) Epiplakin, a novel member of the plakin family originally identified as a 450-kDa human epidermal autoantigen. Structure and tissue localization. J Biol Chem 276:13340–13347

    CAS  PubMed  Google Scholar 

  • Gache Y, Chavanas S, Lacour JP, Wiche G, Owaribe K, Meneguzzi G, Ortonne JP (1996) Defective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest 97:2289–2298

    CAS  PubMed  Google Scholar 

  • Gagnoux-Palacios L, Gache Y, Ortonne JP, Meneguzzi G (1997) Hemidesmosome assembly assessed by expression of a wild-type integrin β4 cDNA in junctional epidermolysis bullosa keratinocytes. Lab Invest 77:459–468

    CAS  PubMed  Google Scholar 

  • Gallicano GI, Kouklis P, Bauer C, Yin M, Vasioukhin V, Degenstein L, Fuchs E (1998) Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J Cell Biol 143:2009–2022

    CAS  PubMed  Google Scholar 

  • Gambaletta D, Marchetti A, Benedetti L, Mercurio AM, Sacchi A, Falcioni R (2000) Cooperative signaling between α6β4 integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J Biol Chem 275:10604–10610

    CAS  PubMed  Google Scholar 

  • Garcia-Alvarez B, Bobkov A, Sonnenberg A, de Pereda JM (2003) Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin β4. Structure 11:615–625

    CAS  PubMed  Google Scholar 

  • Geerts D, Fontao L, Nievers MG, Schaapveld RQ, Purkis PE, Wheeler GN, Lane EB, Leigh IM, Sonnenberg A (1999) Binding of integrin α6β4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J Cell Biol 147:417–434

    CAS  PubMed  Google Scholar 

  • Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M (1996) Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet 13:370–373

    CAS  PubMed  Google Scholar 

  • Gimond C, Baudoin C, van der Neut R, Kramer D, Calafat J, Sonnenberg A (1998) CreloxP-mediated inactivation of the α6A integrin splice variant in vivo: evidence for a specific functional role of α6A in lymphocyte migration but not in heart development. J Cell Biol 143:253–266

    CAS  PubMed  Google Scholar 

  • Giudice GJ, Emery DJ, Diaz LA (1992) Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP180. J Invest Dermatol 99:243–250

    CAS  PubMed  Google Scholar 

  • Giudice GJ, Emery DJ, Zelickson BD, Anhalt GJ, Liu Z, Diaz LA (1993) Bullous pemphigoid and herpes gestationis autoantibodies recognize a common non-collagenous site on the BP180 ectodomain. J Immunol 151:5742–5750

    CAS  PubMed  Google Scholar 

  • Green KJ, Jones JC (1996) Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J 10:871–881

    CAS  PubMed  Google Scholar 

  • Green KJ, Parry DA, Steinert PM, Virata ML, Wagner RM, Angst BD, Nilles LA (1990) Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem 265:2603–2612

    CAS  PubMed  Google Scholar 

  • Green KJ, Virata ML, Elgart GW, Stanley JR, Parry DA (1992) Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments. Int J Biol Macromol 14:145–153

    CAS  PubMed  Google Scholar 

  • Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    CAS  PubMed  Google Scholar 

  • Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B, Fuchs E (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81:233–243

    CAS  PubMed  Google Scholar 

  • Hagg P, Rehn M, Huhtala P, Vaisanen T, Tamminen M, Pihlajaniemi T (1998) Type XIII collagen is identified as a plasma membrane protein. J Biol Chem 273:15590–15597

    CAS  PubMed  Google Scholar 

  • Hagg P, Vaisanen T, Tuomisto A, Rehn M, Tu H, Huhtala P, Eskelinen S, Pihlajaniemi T (2001) Type XIII collagen: a novel cell adhesion component present in a range of cellmatrix adhesions and in the intercalated discs between cardiac muscle cells. Matrix Biol 19:727–742

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. EMBO J 21:1524–1534

    CAS  PubMed  Google Scholar 

  • Hatzfeld M, Weber K (1991) Modulation of keratin intermediate filament assembly by single amino acid exchanges in the consensus sequence at the C-terminal end of the rod domain. J Cell Sci 99:351–362

    CAS  PubMed  Google Scholar 

  • Hatzfeld M, Haffner C, Schulze K, Vinzens U (2000) The function of plakophilin 1 in desmosome assembly and actin filament organization. J Cell Biol 149:209–222

    CAS  PubMed  Google Scholar 

  • Heins S, Aebi U (1994) Making heads and tails of intermediate filament assembly, dynamics and networks. Curr Opin Cell Biol 6:25–33

    CAS  PubMed  Google Scholar 

  • Hemler ME (1998) Integrin associated proteins. Curr Opin Cell Biol 10:578–585

    CAS  PubMed  Google Scholar 

  • Herrmann H, Wiche G (1987) Plectin and IFAP-300 K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J Biol Chem 262:1320–1325

    CAS  PubMed  Google Scholar 

  • Hieda Y, Nishizawa Y, Uematsu J, Owaribe K (1992) Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J Cell Biol 116:1497–1506

    CAS  PubMed  Google Scholar 

  • Hijikata T, Murakami T, Ishikawa H, Yorifuji H (2003) Plectin tethers desmin intermediate filaments onto subsarcolemmal dense plaques containing dystrophin and vinculin. Histochem Cell Biol 119:109–123

    CAS  PubMed  Google Scholar 

  • Hirako Y, Usukura J, Nishizawa Y, Owaribe K (1996) Demonstration of the molecular shape of BP180, a 180-kDa bullous pemphigoid antigen and its potential for trimer formation. J Biol Chem 271:13739–13745

    CAS  PubMed  Google Scholar 

  • Hogervorst F, Kuikman I, von dem Borne AEG Kr, Sonnenberg A (1990) Cloning and sequence analysis of β4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J 9:765–770

    CAS  PubMed  Google Scholar 

  • Hogervorst F, Kuikman I, van Kessel AG, Sonnenberg A (1991) Molecular cloning of the human α6 integrin subunit. Alternative splicing of α 6 mRNA and chromosomal localization of the α6 and β4 genes. Eur J Biochem 199:425–433

    CAS  PubMed  Google Scholar 

  • Hogervorst F, Admiraal LG, Niessen C, Kuikman I, Janssen H, Daams H, Sonnenberg A (1993) Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit. J Cell Biol 121:179–191

    CAS  PubMed  Google Scholar 

  • Hopkinson SB, Jones JC (2000) The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome. Mol Biol Cell 11:277–286

    CAS  PubMed  Google Scholar 

  • Hopkinson SB, Riddelle KS, Jones JC (1992) Cytoplasmic domain of the 180-kD bullous pemphigoid antigen, a hemidesmosomal component: molecular and cell biologic characterization. J Invest Dermatol 99:264–270

    CAS  PubMed  Google Scholar 

  • Hopkinson SB, Baker SE, Jones JC (1995) Molecular genetic studies of a human epidermal autoantigen (the 180-kD bullous pemphigoid antigen/BP180): identification of functionally important sequences within the BP180 molecule and evidence for an interaction between BP180 and α6 integrin. J Cell Biol 130:117–125

    CAS  PubMed  Google Scholar 

  • Imai T, Yoshie O (1993) C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in Tcells. J Immunol 151:6470–6481

    CAS  PubMed  Google Scholar 

  • Jarrett HW, Foster JL (1995) Alternate binding of actin and calmodulin to multiple sites on dystrophin. J Biol Chem 270:5578–5586

    CAS  PubMed  Google Scholar 

  • Jonkman MF, de Jong MC, Heeres K, Pas HH, van der Meer JB, Owaribe K, Martinez d, V, Niessen CM, Sonnenberg A (1995) 180-kD bullous pemphigoid antigen (BP180) is deficient in generalized atrophic benign epidermolysis bullosa. J Clin Invest 95:1345–1352

    CAS  PubMed  Google Scholar 

  • Kajiji S, Tamura RN, Quaranta V (1989) A novel integrin (αEβ4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J 8:673–680

    CAS  PubMed  Google Scholar 

  • Karakesisoglou I, Yang Y, Fuchs E (2000) An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J Cell Biol 149:195–208

    CAS  PubMed  Google Scholar 

  • Keep NH, Winder SJ, Moores CA, Walke S, Norwood FL, Kendrick-Jones J (1999) Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer. Structure Fold Des 7:1539–1546

    CAS  PubMed  Google Scholar 

  • Kennel SJ, Godfrey V, Chang LY, Lankford TK, Foote LJ, Makkinje A (1992) The β4 subunit of the integrin family is displayed on a restricted subset of endothelium in mice. J Cell Sci 101:145–150

    CAS  PubMed  Google Scholar 

  • Kennel SJ, Foote LJ, Cimino L, Rizzo MG, Chang LY, Sacchi A (1993) Sequence of a cDNA encoding the β4 subunit of murine integrin. Gene 130:209–216

    CAS  PubMed  Google Scholar 

  • Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N, Ferguson B, Munoz F, Morgan D, Clarke A, Baybayan P, Chen EY, Ezer S, Saarialho-Kere U, de la Chappelle A, Schlessinger D (1996) X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 13:409–416

    CAS  PubMed  Google Scholar 

  • Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18

    CAS  PubMed  Google Scholar 

  • Koster J, Kuikman I, Kreft M, Sonnenberg A (2001) Two different mutations in the cytoplasmic domain of the integrin β4 subunit in nonlethal forms of epidermolysis bullosa prevent interaction of β4 with plectin. J Invest Dermatol 117:1405–1411

    CAS  PubMed  Google Scholar 

  • Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A (2003) Analysis of the interactions between BP180, BP230, plectin and the integrin α6β4 important for hemidesmosome assembly. J Cell Sci 116:387–399

    CAS  PubMed  Google Scholar 

  • Kouklis PD, Hutton E, Fuchs E (1994) Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J Cell Biol 127:1049–1060

    CAS  PubMed  Google Scholar 

  • Kowalczyk AP, Bornslaeger EA, Borgwardt JE, Palka HL, Dhaliwal AS, Corcoran CM, Denning MF, Green KJ (1997) The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J Cell Biol 139:773–784

    CAS  PubMed  Google Scholar 

  • Krieger M (1992) Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci 17:141–146

    CAS  PubMed  Google Scholar 

  • Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boquet P, Boucheix C, Conjeaud H, Rubinstein E (1997) Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol 182:105–112

    CAS  PubMed  Google Scholar 

  • Letai A, Coulombe PA, Fuchs E (1992) Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations. J Cell Biol 116:1181–1195

    CAS  PubMed  Google Scholar 

  • Leung CL, Sun D, Zheng M, Knowles DR, Liem RK (1999) Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147:1275–1286

    CAS  PubMed  Google Scholar 

  • Leung CL, Zheng M, Prater SM, Liem RK (2001) The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154:691–697

    CAS  PubMed  Google Scholar 

  • Leung CL, Green KJ, Liem RK (2002) Plakins: a family of versatile cytolinker proteins. Trends Cell Biol 12:37–45

    CAS  PubMed  Google Scholar 

  • Li K, Tamai K, Tan EM, Uitto J (1993) Cloning of type XVII collagen. Complementary and genomic DNA sequences of mouse 180-kilodalton bullous pemphigoid antigen (BPAG2) predict an interrupted collagenous domain, a transmembrane segment, and unusual features in the 50-end of the gene and the 30-untranslated region of the mRNA. J Biol Chem 268:8825–8834

    CAS  PubMed  Google Scholar 

  • Liu CG, Maercker C, Castanon MJ, Hauptmann R, Wiche G (1996) Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc Natl Acad Sci U S A 93:4278–4283

    CAS  PubMed  Google Scholar 

  • Liu Z, Diaz LA, Troy JL, Taylor AF, Emery DJ, Fairley JA, Giudice GJ (1993) A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 92:2480–2488

    CAS  PubMed  Google Scholar 

  • Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E (1995) The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 129:1329–1344

    CAS  PubMed  Google Scholar 

  • Lo SH, Janmey PA, Hartwig JH, Chen LB (1994) Interactions of tensin with actin and identification of its three distinct actin-binding domains. J Cell Biol 125:1067–1075

    CAS  PubMed  Google Scholar 

  • Lohi J (2001) Laminin-5 in the progression of carcinomas. Int J Cancer 94:763–767

    CAS  PubMed  Google Scholar 

  • Maatta A, DiColandrea T, Groot K, Watt FM (2001) Gene targeting of envoplakin, a cytoskeletal linker protein and precursor of the epidermal cornified envelope. Mol Cell Biol 21:7047–7053

    CAS  PubMed  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    CAS  PubMed  Google Scholar 

  • Magin TM, Schroder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW (1998) Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 140:1441–1451

    CAS  PubMed  Google Scholar 

  • Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J, Giancotti FG (1995) Signal transduction by the α6β4 integrin: distinct β4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J 14:4470–4481

    CAS  PubMed  Google Scholar 

  • Mainiero F, Pepe A, Yeon M, Ren Y, Giancotti FG (1996) The intracellular functions of α6β4 integrin are regulated by EGF. J Cell Biol 134:241–253

    CAS  PubMed  Google Scholar 

  • Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME (1996) Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin α4β1 (CD49d/CD29). J Immunol 157:2039–2047

    CAS  PubMed  Google Scholar 

  • Marinkovich MP, Lunstrum GP, Keene DR, Burgeson RE (1992) The dermal-epidermal junction of human skin contains a novel laminin variant. J Cell Biol 119:695–703

    CAS  PubMed  Google Scholar 

  • McGowan KA, Marinkovich MP (2000) Laminins and human disease. Microsc Res Tech 51:262–279

    CAS  PubMed  Google Scholar 

  • McGrath JA, Gatalica B, Christiano AM, Li K, Owaribe K, McMillan JR, Eady RA, Uitto J (1995) Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat Genet 11:83–86

    CAS  PubMed  Google Scholar 

  • McLean WH, Pulkkinen L, Smith FJ, Rugg EL, Lane EB, Bullrich F, Burgeson RE, Amano S, Hudson DL, Owaribe K, McGrath JA, McMillan JR, Eady RA, Leigh IM, Christiano AM, Uitto J (1996) Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev 10:1724–1735

    CAS  PubMed  Google Scholar 

  • McMillan JR, McGrath JA, Tidman MJ, Eady RA (1998) Hemidesmosomes show abnormal association with the keratin filament network in junctional forms of epidermolysis bullosa. J Invest Dermatol 110:132–137

    CAS  PubMed  Google Scholar 

  • Mellerio JE, Smith FJ, McMillan JR, McLean WH, McGrath JA, Morrison GA, Tierney P, Albert DM, Wiche G, Leigh IM, Geddes JF, Lane EB, Uitto J, Eady RA (1997) Recessive epidermolysis bullosa simplex associated with plectin mutations: infantile respiratory complications in two unrelated cases. Br J Dermatol 137:898–906

    CAS  PubMed  Google Scholar 

  • Meng JJ, Bornslaeger EA, Green KJ, Steinert PM, Ip W (1997) Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments. J Biol Chem 272:21495–21503

    CAS  PubMed  Google Scholar 

  • Meng X, Klement JF, Leperi DA, Birk DE, Sasaki T, Timpl R, Uitto J, Pulkkinen L (2003) Targeted inactivation of murine laminin gamma2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol 121:720–731

    CAS  PubMed  Google Scholar 

  • Nakano A, Pulkkinen L, Murrell D, Rico J, Lucky AW, Garzon M, Stevens CA, Robertson S, Pfendner E, Uitto J (2001) Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the β4 integrin gene (ITGB4) and genotype/phenotype correlations. Pediatr Res 49:618–626

    CAS  PubMed  Google Scholar 

  • Niessen CM, Cremona O, Daams H, Ferraresi S, Sonnenberg A, Marchisio PC (1994a) Expression of the integrin α6β4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the β4 subunit. J Cell Sci 107:543–552

    CAS  PubMed  Google Scholar 

  • Niessen CM, Hogervorst F, Jaspars LH, de Melker AA, Delwel GO, Hulsman EH, Kuikman I, Sonnenberg A (1994b) The α6β4 integrin is a receptor for both laminin and kalinin. Exp Cell Res 211:360–367

    CAS  PubMed  Google Scholar 

  • Niessen CM, Raaij-Helmer MH, Hulsman EH, van der Neut, R, Jonkman MF, Sonnenberg A (1996) Deficiency of the integrin β4 subunit in junctional epidermolysis bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion properties. J Cell Sci 109:1695–1706

    CAS  PubMed  Google Scholar 

  • Niessen CM, Hulsman EH, Rots ES, Sanchez-Aparicio P, Sonnenberg A (1997a) Integrin α6β4 forms a complex with the cytoskeletal protein HD1 and induces its redistribution in transfected COS-7 cells. Mol Biol Cell 8:555–566

    CAS  PubMed  Google Scholar 

  • Niessen CM, Hulsman EH, Oomen LC, Kuikman I, Sonnenberg A (1997b) A minimal region on the integrin β4 subunit that is critical to its localization in hemidesmosomes regulates the distribution of HD1/plectin in COS-7 cells. J Cell Sci 110:1705–1716

    CAS  PubMed  Google Scholar 

  • Nievers MG, Schaapveld RQ, Oomen LC, Fontao L, Geerts D, Sonnenberg A (1998) Ligand-independent role of the β4 integrin subunit in the formation of hemidesmosomes. J Cell Sci 111:1659–1672

    CAS  PubMed  Google Scholar 

  • Nievers MG, Schaapveld RQ, Sonnenberg A (1999) Biology and function of hemidesmosomes. Matrix Biol 18:5–17

    CAS  PubMed  Google Scholar 

  • Nievers MG, Kuikman I, Geerts D, Leigh IM, Sonnenberg A (2000) Formation of hemidesmosome-like structures in the absence of ligand binding by the α6β4 integrin requires binding of HD1/plectin to the cytoplasmic domain of the β4 integrin subunit. J Cell Sci 113:963–973

    CAS  PubMed  Google Scholar 

  • Nikolic B, Mac NE, Mir B, Wiche G (1996) Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol 134:1455–1467

    CAS  PubMed  Google Scholar 

  • Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766

    CAS  PubMed  Google Scholar 

  • Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J (2000) The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure Fold Des 8:481–491

    CAS  PubMed  Google Scholar 

  • O’Keefe EJ, Erickson HP, Bennett V (1989) Desmoplakin I and desmoplakin II. Purification and characterization. J Biol Chem 264:8310–8318

    PubMed  Google Scholar 

  • Okuda T, Matsuda S, Nakatsugawa S, Ichigotani Y, Iwahashi N, Takahashi M, Ishigaski T, Hamaguchi M (1999) Molecular cloning of macrophin, a human homologue of Drosophila kakapo with a close structural similarity to plectin and dystrophin. Biochem Biophys Res Commun 264:568–574

    CAS  PubMed  Google Scholar 

  • Okumura M, Uematsu J, Hirako Y, Nishizawa Y, Shimizu H, Kido N, Owaribe K (1999) Identification of the hemidesmosomal 500 kDa protein (HD1) as plectin. J Biochem (Tokyo) 126:1144–1150

    CAS  Google Scholar 

  • Orian-Rousseau V, Aberdam D, Fontao L, Chevalier L, Meneguzzi G, Kedinger M, Simon-Assmann P (1996) Developmental expression of laminin-5 and HD1 in the intestine: epithelial to mesenchymal shift for the laminin γ2 chain subunit deposition. Dev Dyn 206:12–23

    CAS  PubMed  Google Scholar 

  • Peters B, Kirfel J, Bussow H, Vidal M, Magin TM (2001) Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell 12:1775–1789

    CAS  PubMed  Google Scholar 

  • Pihlajaniemi T, Rehn M (1995) Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Prog Nucleic Acid Res Mol Biol 50:225–262

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Christiano AM, Airenne T, Haakana H, Tryggvason K, Uitto J (1994) Mutations in the γ2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet 6:293–297

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Smith FJ, Shimizu H, Murata S, Yaoita H, Hachisuka H, Nishikawa T, McLean WH, Uitto J (1996) Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum Mol Genet 5:1539–1546

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Kimonis VE, Xu Y, Spanou EN, McLean WH, Uitto J (1997a) Homozygous α6 integrin mutation in junctional epidermolysis bullosa with congenital duodenal atresia. Hum Mol Genet 6:669–674

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, McGrath J, Airenne T, Haakana H, Tryggvason K, Kivirikko S, Meneguzzi G, Ortonne JP, Christiano AM, Uitto J (1997b) Detection of novel LAMC2 mutations in Herlitz junctional epidermolysis Bullosa. Mol Med 3:124–135

    CAS  PubMed  Google Scholar 

  • Pulkkinen L, Kim DU, Uitto J (1998) Epidermolysis bullosa with pyloric atresia: novel mutations in the β4 integrin gene (ITGB4). Am J Pathol 152:157–166

    CAS  PubMed  Google Scholar 

  • Pyke C, Romer J, Kallunki P, Lund LR, Ralfkiaer E, Dano K, Tryggvason K (1994) The γ2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol 145:782–791

    CAS  PubMed  Google Scholar 

  • Pytela R, Wiche G (1980) High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci U S A 77:4808–4812

    CAS  PubMed  Google Scholar 

  • Rabinovitz I, Toker A, Mercurio AM (1999) Protein kinase C-dependent mobilization of the α6β4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 146:1147–1160

    CAS  PubMed  Google Scholar 

  • Reddy DP, Muller H, Tran N, Nguyn H, Schaecke L, Bruckner-Tuderman L, Marinkovich P (1998) The extracellular domain of BP180 binds laminin-5. J Invest Dermatol 110:593a

    Google Scholar 

  • Rezniczek GA, de Pereda JM, Reipert S, Wiche G (1998) Linking integrin α6β4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the β4 subunit and plectin at multiple molecular sites. J Cell Biol 141:209–225

    CAS  PubMed  Google Scholar 

  • Roh JY, Yee C, Lazarova Z, Hall RP, Yancey KB (2000) The 120-kDa soluble ectodomain of type XVII collagen is recognized by autoantibodies in patients with pemphigoid and linear IgA dermatosis. Br J Dermatol 143:104–111

    CAS  PubMed  Google Scholar 

  • Roper K, Gregory SL, Brown NH (2002) The’ spectraplakins’: cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115:4215–4225

    CAS  PubMed  Google Scholar 

  • Ruhrberg C, Hajibagheri MA, Simon M, Dooley TP, Watt FM (1996) Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J Cell Biol 134:715–729

    CAS  PubMed  Google Scholar 

  • Ruhrberg C, Hajibagheri MA, Parry DA, Watt FM (1997) Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J Cell Biol 139:1835–1849

    CAS  PubMed  Google Scholar 

  • Ruzzi L, Gagnoux-Palacios L, Pinola M, Belli S, Meneguzzi G, D’Alessio M, Zambruno G (1997) A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 99:2826–2831

    CAS  PubMed  Google Scholar 

  • Ryan MC, Tizard R, Van Devanter DR, Carter WG (1994) Cloning of the LamA3 gene encoding the α3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem 269:22779–22787

    CAS  PubMed  Google Scholar 

  • Ryan MC, Lee K, Miyashita Y, Carter WG (1999) Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 145:1309–1323

    CAS  PubMed  Google Scholar 

  • Sanchez-Aparicio P, Martinez d, V, Niessen CM, Borradori L, Kuikman I, Hulsman EH, Fassler R, Owaribe K, Sonnenberg A (1997) The subcellular distribution of the high molecular mass protein, HD1, is determined by the cytoplasmic domain of the integrin β4 subunit. J Cell Sci 110:169–178

    CAS  PubMed  Google Scholar 

  • Schaapveld RQ, Borradori L, Geerts D, van Leusden MR, Kuikman I, Nievers MG, Niessen CM, Steenbergen RD, Snijders PJ, Sonnenberg A (1998) Hemidesmosome formation is initiated by the β4 integrin subunit, requires complex formation of β4 and HD1/plectin, and involves a direct interaction between β4 and the bullous pemphigoid antigen 180. J Cell Biol 142:271–284

    CAS  PubMed  Google Scholar 

  • Schwarz EM, Benzer S (1997) Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci U S A 94:10249–10254

    CAS  PubMed  Google Scholar 

  • Seifert GJ, Lawson D, Wiche G (1992) Immunolocalization of the intermediate filament-associated protein plectin at focal contacts and actin stress fibers. Eur J Cell Biol 59:138–147

    CAS  PubMed  Google Scholar 

  • Shang M, Koshikawa N, Schenk S, Quaranta V (2001) The LG3 module of laminin-5 harbors a binding site for integrin α3β1 that promotes cell adhesion, spreading, and migration. J Biol Chem 276:33045–33053

    CAS  PubMed  Google Scholar 

  • Sincock PM, Mayrhofer G, Ashman LK (1997) Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and α5β1 integrin. J Histochem Cytochem 45:515–525

    CAS  PubMed  Google Scholar 

  • Smith EA, Fuchs E (1998) Defining the interactions between intermediate filaments and desmosomes. J Cell Biol 141:1229–1241

    CAS  PubMed  Google Scholar 

  • Smith FJ, Eady RA, Leigh IM, McMillan JR, Rugg EL, Kelsell DP, Bryant SP, Spurr NK, Geddes JF, Kirtschig G, Milana G, de Bono AG, Owaribe K, Wiche G, Pulkkinen L, Uitto J, McLean WH, Lane EB (1996) Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat Genet 13:450–457

    CAS  PubMed  Google Scholar 

  • Snellman A, Tu H, Vaisanen T, Kvist AP, Huhtala P, Pihlajaniemi T (2000) A short sequence in the N-terminal region is required for the trimerization of type XIII collagen and is conserved in other collagenous transmembrane proteins. EMBO J 19:5051–5059

    CAS  PubMed  Google Scholar 

  • Sonnenberg A, Linders CJ, Daams JH, Kennel SJ (1990) The α6β1 (VLA-6) and α6β4 protein complexes: tissue distribution and biochemical properties. J Cell Sci 96:207–217

    CAS  PubMed  Google Scholar 

  • Sonnenberg A, Calafat J, Janssen H, Daams H, Raaij-Helmer LM, Falcioni R, Kennel SJ, Aplin JD, Baker J, Loizidou M, Garrod D (1991) Integrin α6β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 113:907–917

    CAS  PubMed  Google Scholar 

  • Spinardi L, Ren YL, Sanders R, Giancotti FG (1993) The β4 subunit cytoplasmic domain mediates the interaction of α6β4 integrin with the cytoskeleton of hemidesmosomes. Mol Biol Cell 4:871–884

    CAS  PubMed  Google Scholar 

  • Spinardi L, Einheber S, Cullen T, Milner TA, Giancotti FG (1995) A recombinant tail-less integrin β4 subunit disrupts hemidesmosomes, but does not suppress α6β4-mediated cell adhesion to laminins. J Cell Biol 129:473–487

    CAS  PubMed  Google Scholar 

  • Stanley JR (1993) Cell adhesion molecules as targets of autoantibodies in pemphigus and pemphigoid, bullous diseases due to defective epidermal cell adhesion. Adv Immunol 53:291–325

    CAS  PubMed  Google Scholar 

  • Stappenbeck TS, Green KJ (1992) The desmoplakin carboxyl terminus coaligns with and specifically disrupts intermediate filament networks when expressed in cultured cells. J Cell Biol 116:1197–1209

    CAS  PubMed  Google Scholar 

  • Stappenbeck TS, Bornslaeger EA, Corcoran CM, Luu HH, Virata ML, Green KJ (1993) Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J Cell Biol 123:691–705

    CAS  PubMed  Google Scholar 

  • Steinbock FA, Nikolic B, Coulombe PA, Fuchs E, Traub P, Wiche G (2000) Dose-dependent linkage, assembly inhibition and disassembly of vimentin and cytokeratin 5/14 filaments through plectins intermediate filament-binding domain. J Cell Sci 113:483–491

    CAS  PubMed  Google Scholar 

  • Steinert PM, North AC, Parry DA (1994) Structural features of keratin intermediate filaments. J Invest Dermatol 103:19S–24S

    CAS  PubMed  Google Scholar 

  • Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK (1990) α6β4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci U S A 87:8970–8974

    CAS  PubMed  Google Scholar 

  • Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin α6β4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982

    CAS  PubMed  Google Scholar 

  • Sun Y, Zhang J, Kraeft SK, Auclair D, Chang MS, Liu Y, Sutherland R, Salgia R, Griffin JD, Ferland LH, Chen LB (1999) Molecular cloning and characterization of human trabeculin-α, a giant protein defining a new family of actin-binding proteins. J Biol Chem 274:33522–33530

    CAS  PubMed  Google Scholar 

  • Suzuki S, Naitoh Y (1990) Amino acid sequence of a novel integrin β4 subunit and primary expression of the mRNA in epithelial cells. EMBO J 9:757–763

    CAS  PubMed  Google Scholar 

  • Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135:991–1007

    CAS  PubMed  Google Scholar 

  • Takizawa Y, Shimizu H, Nishikawa T, Hatta N, Pulkkinen L, Uitto J (1997) Novel ITGB4 mutations in a patient with junctional epidermolysis bullosa-pyloric atresia syndrome and altered basement membrane zone immunofluorescence for the α6β4 integrin. J Invest Dermatol 108:943–946

    CAS  PubMed  Google Scholar 

  • Tamura RN, Rozzo C, Starr L, Chambers J, Reichardt LF, Cooper HM, Quaranta V (1990) Epithelial integrin α6β4: complete primary structure of α6 and variant forms of β4. J Cell Biol 111:1593–1604

    CAS  PubMed  Google Scholar 

  • Tamura RN, Cooper HM, Collo G, Quaranta V (1991) Cell type-specific integrin variants with alternative α chain cytoplasmic domains. Proc Natl Acad Sci U S A 88:10183–10187

    CAS  PubMed  Google Scholar 

  • Tasanen K, Eble JA, Aumailley M, Schumann H, Baetge J, Tu H, Bruckner P, Bruckner-Tuderman L (2000) Collagen XVII is destabilized by a glycine substitution mutation in the cell adhesion domain Col15. J Biol Chem 275:3093–3099

    CAS  PubMed  Google Scholar 

  • Timpl R, Brown JC (1994) The laminins. Matrix Biol 14:275–281

    CAS  PubMed  Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM (2001) A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107:643–654

    CAS  PubMed  Google Scholar 

  • Uematsu J, Nishizawa Y, Sonnenberg A, Owaribe K (1994) Demonstration of type II hemidesmosomes in a mammary gland epithelial cell line, BMGE-H. J Biochem (Tokyo) 115:469–476

    CAS  Google Scholar 

  • Uitto J, Pulkkinen L, Smith FJ, McLean WH (1996) Plectin and human genetic disorders of the skin and muscle. The paradigm of epidermolysis bullosa with muscular dystrophy. Exp Dermatol 5:237–246

    CAS  PubMed  Google Scholar 

  • van den Heuvel AP, Vries-Smits AM, van Weeren PC, Dijkers PF, de Bruyn KM, Riedl JA, Burgering BM (2002) Binding of protein kinase B to the plakin family member periplakin. J Cell Sci 115:3957–3966

    PubMed  Google Scholar 

  • van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nat Genet 13:366–369

    PubMed  Google Scholar 

  • van Leusden MR, Kuikman I, Sonnenberg A (1997) The unique cytoplasmic domain of the human integrin variant β4E is produced by partial retention of intronic sequences. Biochem Biophys Res Commun 235:826–830

    PubMed  Google Scholar 

  • Verrando P, Pisani A, Ortonne JP (1988) The new basement membrane antigen recognized by the monoclonal antibody GB3 is a large size glycoprotein: modulation of its expression by retinoic acid. Biochim Biophys Acta 942:45–56

    CAS  PubMed  Google Scholar 

  • Verrando P, Blanchet-Bardon C, Pisani A, Thomas L, Cambazard F, Eady RA, Schofield O, Ortonne JP (1991) Monoclonal antibody GB3 defines a widespread defect of several basement membranes and a keratinocyte dysfunction in patients with lethal junctional epidermolysis bullosa. Lab Invest 64:85–92

    CAS  PubMed  Google Scholar 

  • Vidal F, Baudoin C, Miquel C, Galliano MF, Christiano AM, Uitto J, Ortonne JP, Meneguzzi G (1995) Cloning of the laminin α3 chain gene (LAMA3) and identification of a homozygous deletion in a patient with Herlitz junctional epidermolysis bullosa. Genomics 30:273–280

    CAS  PubMed  Google Scholar 

  • Virata ML, Wagner RM, Parry DA, Green KJ (1992) Molecular structure of the human desmoplakin I and II amino terminus. Proc Natl Acad Sci U S A 89:544–548

    CAS  PubMed  Google Scholar 

  • Wadsworth S, Halvorson MJ, Coligan JE (1992) Developmentally regulated expression of the β4 integrin on immature mouse thymocytes. J Immunol 149:421–428

    CAS  PubMed  Google Scholar 

  • Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, Werb Z, Bissell MJ (2002) β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2:205–216

    CAS  PubMed  Google Scholar 

  • Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111:2477–2486

    CAS  PubMed  Google Scholar 

  • Wiche G, Baker MA (1982) Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to a high molecular weight protein present in cytoskeletal preparations from cultured cells. Exp Cell Res 138:15–29

    CAS  PubMed  Google Scholar 

  • Wiche G, Krepler R, Artlieb U, Pytela R, Denk H (1983) Occurrence and immunolocalization of plectin in tissues. J Cell Biol 97:887–901

    CAS  PubMed  Google Scholar 

  • Wiche G, Krepler R, Artlieb U, Pytela R, Aberer W (1984) Identification of plectin in different human cell types and immunolocalization at epithelial basal cell surface membranes. Exp Cell Res 155:43–49

    CAS  PubMed  Google Scholar 

  • Wiche G, Becker B, Luber K, Weitzer G, Castanon MJ, Hauptmann R, Stratowa C, Stewart M (1991) Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central α-helical coiled coil. J Cell Biol 114:83–99

    CAS  PubMed  Google Scholar 

  • Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    CAS  PubMed  Google Scholar 

  • Yang Y, Dowling J, Yu QC, Kouklis P, Cleveland DW, Fuchs E (1996) An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86:655–665

    CAS  PubMed  Google Scholar 

  • Yang Y, Bauer C, Strasser G, Wollman R, Julien JP, Fuchs E (1999) Integrators of the cytoskeleton that stabilize microtubules. Cell 98:229–238

    CAS  PubMed  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin α3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    CAS  PubMed  Google Scholar 

  • Yurchenco PD, O’Rear JJ (1994) Basal lamina assembly. Curr Opin Cell Biol 6:674–681

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sonnenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Koster, J., Borradori, L., Sonnenberg, A. (2004). Hemidesmosomes: Molecular Organization and Their Importance for Cell Adhesion and Disease. In: Behrens, J., Nelson, W.J. (eds) Cell Adhesion. Handbook of Experimental Pharmacology, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68170-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68170-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20941-6

  • Online ISBN: 978-3-540-68170-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics