Skip to main content

Transformation of Aqueous Pollutants by Chlorine Dioxide: Reactions, Mechanisms and Products

  • Chapter
Quality and Treatment of Drinking Water II

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5 / 5C))

Abstract

Chlorine dioxide is frequently used for the disinfection of drinking water and wastewater effluents. Its use is desired in particular in case of taste and odor problems caused by chlorine, or when the concentration of undesirable chlorinated by-products exceeds their maximum allowable concentrations. The chemical reactions of chlorine dioxide are much more specific and selective than those of chlorine and, as a consequence, it has a lower demand by water and does not produce as many by-products. However, chlorine dioxide is not an ideal oxidant either, because it reacts with various inorganic and organic aquatic compounds to produce a variety of products. The present chapter summarizes the reactions of ClO2 with the major inorganic compounds or organic groups which are, or may be, present in water, and describes their products. Special attention has been paid to the mechanisms of reactions in order to enable the prediction of reactions and products not specified in the current chapter. Some toxicological assessments of chlorine dioxide disinfection in general, and of some of its by-products in particular, are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

E.T.:

Electron Transfer

GAC:

Granular Activated Carbon

MAC:

Maximum Allowable Concentration

MCL:

Maximum Contamination Level

MO:

Molecular Orbital

PAH:

Polynuclear Aromatic Hydrocarbons

THM:

Trihalomethanes

TLV:

Threshold Limit Value

References

  1. Rook JJ (1974) Water Treat Exam 23. 234

    Google Scholar 

  2. Bull RJ (1980) J Am Water Works Assoc 72: 299

    CAS  Google Scholar 

  3. Cantor KP, Hoover R, Mason TJ, McCabe LJ (1978) J Natn Cancer Inst 61: 979

    CAS  Google Scholar 

  4. Augenstein HW (1971) J Am Water Works Assoc 66: 716

    Google Scholar 

  5. Longley KW, Moore BE, Sorber CW (1980) J Water Pollut Control Fed 52: 2098

    CAS  Google Scholar 

  6. Cronir S, Scarpiro PV, Zink ML (1980) In: Jolley RL, Gorchev H, Hamilton DH (eds) Water chlorination: environmental impact and health effects. Ann Arbor Science, Ann Arbor MI., vol 2, pp 651–659

    Google Scholar 

  7. Sussman QS, Ward U (1981) Engineering aspects of chlorine dioxide. Proceedings of Seminar on Control of Organic Chemical Contaminants in Drinking Water. USEPA, Washington DC

    Google Scholar 

  8. Heffernan WP, Guion C, Bull RJ (1979) J Environ Pathol Toxicol 2: 1487

    CAS  Google Scholar 

  9. Couri D, Abdel-Rahman MD (1980) J Environ Pathol Toxicol 3: 451

    Google Scholar 

  10. Stevens AA (1982) Environ Health Presp 46: 101

    CAS  Google Scholar 

  11. Rosenblatt DH (1978) In: Rice RG, Cotruvo JA (eds) Ozone/chlorine dioxide oxidation products of organic materials. Ozone Press International, Cleveland Ohio, pp 332–343

    Google Scholar 

  12. Emeléus HJ, Sharpe AG (eds) (1963) Advances in inorganic and radiochemistry. Academic Press, NY, vol 5, p 52

    Google Scholar 

  13. Taube H, Dodgen J (1949) J Amer Chem Soc 71: 3330

    CAS  Google Scholar 

  14. White JF (1949) In: Kirk PE, Othmer DF (eds) Encyclopedia of chemical technology, vol 3. Interscience Encyclopedia, NY, pp 696–707

    Google Scholar 

  15. Gordon G, Kieffer RG, Rosenblatt DH (1972) Prog Inorg Chem 15: 201

    CAS  Google Scholar 

  16. Brett RW, Ridgeway JW (1981) J Inst Water Eng Sci 35: 135

    CAS  Google Scholar 

  17. Bowen EJ, Cheung WM (1932) J Chem Soc. 1200

    Google Scholar 

  18. Bray WC (1906) Z Physik Chem 54: 569

    Google Scholar 

  19. Williamson HV, Hampel CA (1954) US Patent No 2 683 651

    Google Scholar 

  20. Clark AH, Bengley B (1970) J Chem Soc 46 (A): 460

    Google Scholar 

  21. Clark AH (1971) J Mol Struct 7: 485

    CAS  Google Scholar 

  22. Masschelein WJ (1979) Chlorine dioxide: chemistry and environmental impact of oxychlorine compounds. Ann Arbor Science, Ann Arbor, MI

    Google Scholar 

  23. Nielsen AH, Woltz PJH (1952) J Chem Phys 20: 1878

    CAS  Google Scholar 

  24. Green M, Linnett JW (1960) J Chem Soc: 4959

    Google Scholar 

  25. Latimer W (1952) Oxidation potentials, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  26. Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley Interscience, NY

    Google Scholar 

  27. Rav-Acha Ch, Choshen E, Serri A, Limoni B (1983) Environ Sci Health 18: 651

    Google Scholar 

  28. Rav-Acha Ch, Choshen E, Serri A, Limoni B (1985) Environ Poll 10: 47

    CAS  Google Scholar 

  29. Beuermann L (1965) Gas-Wasserfach 106: 783

    CAS  Google Scholar 

  30. Keating E (1952) Papier 9: 155

    Google Scholar 

  31. Luther K, MacDougall F (1906) Z Physik Chem 55: 477

    CAS  Google Scholar 

  32. Luther K, MacDougall F (1908) Z Physik Chem 62: 1908

    Google Scholar 

  33. Flis IE, Mishchenko KP, Salvis KY (1959) Zh Prikl Khim 32: 284

    CAS  Google Scholar 

  34. Belevtzev AN, Maksimenko YL (1975) In: USA/USSR Symp Phys Chem, USEPA, Washington DC, pp 105–110

    Google Scholar 

  35. Barnett B (1935) The decomposition of chlorous acid. Ph.D. Dissertation. University of California, LA

    Google Scholar 

  36. Goodeve CF, Richardson FV (1937) J Amer Chem Soc 59: 294

    Google Scholar 

  37. Gordon G, Feldman F (1964) Inorg Chem 3: 1728

    CAS  Google Scholar 

  38. Limoni B, Chosen E, Rav-Acha Ch (1984) Environ Sci Health 19: 943

    Google Scholar 

  39. Richardson AP (1937) J. Pharmacol Exper Therap 59: 101

    Google Scholar 

  40. Abdel-Rahman MS, Couri D, Bull RI (1981) J Environ Pathol Toxicol 5: 867

    Google Scholar 

  41. Lubbers JR, Chauhan S, Bianchine JR (1982) Environ Health Presp 46: 57

    CAS  Google Scholar 

  42. Michael GE, Miday RK, Berez JP, Miller RJ, Kraemer OF, Lucas JB (1981) Arch Environ Health 36: 20

    CAS  Google Scholar 

  43. Ames RG, Stratton JW (1987) Arch Environ Health 42: 280

    CAS  Google Scholar 

  44. Lubbers JR, Chauhan S, Miller JK, Bianchine JR (1984) J Environ Pathol Toxicol Oncol 5: 229

    CAS  Google Scholar 

  45. Lubbers JR, Bianchine JR (1984) J Environ Pathol Toxicol Oncol 5: 215

    CAS  Google Scholar 

  46. Miller GW, Rice RG, Robson CM, Kühn W, Wolf H (1978) USEPA Report 6001012–78–147, Cincinati, OH

    Google Scholar 

  47. Stevens AA, Seeger DR, Slocam CJ (1978) In: Rice RG, Cotruvo JA (eds) Ozone/C1O2 oxidation products of organic materials. Intl Ozone Inst, Clevelend, OH, pp 332343

    Google Scholar 

  48. Rav-Acha Ch (1984) Water Res 18: 1329

    CAS  Google Scholar 

  49. Rozenblatt DH, Hayes AJ, Harrison BL, Streaty RA, Moore KA (1963) J Org Chem 28: 2790

    Google Scholar 

  50. Rozenblatt DH, Hull LA, De Luca DC, Davis GT, Weglein RC, Williams KR (1967) J Amer Chem Soc 89: 1158

    Google Scholar 

  51. Hull LA, Davis GT, Rozenblatt DH, Williams KR, Weglein RC (1967) J Amer Chem Soc 89: 1163

    CAS  Google Scholar 

  52. Dennis WH, Hull LA, Rozenblatt DH (1967) J Org Chem 32: 3783

    CAS  Google Scholar 

  53. Rozenblatt DH, Davis GT, Hull LA, Forberg GD (1968) J Org Chem 33: 1649

    Google Scholar 

  54. f. Davis GT, Rozenblatt DH (1968) Tetrahedron Lett 4085

    Google Scholar 

  55. Hull LA, Davis GT, Rozenblatt DH (1969) J Amer Chem Soc 91: 6247

    CAS  Google Scholar 

  56. Hull LA, Davis GT, Rozenblatt DH, Mann CK (1969) J Phys Chem 73: 2142

    CAS  Google Scholar 

  57. Hull LA, Giordano WP, Rozenblatt DH, Davis GT, Mann CK, Milliken SB (1969) J Phys Chem 73: 2147

    CAS  Google Scholar 

  58. Burrows EP, Rozenblatt DH, (1982) J Org Chem 47: 892

    CAS  Google Scholar 

  59. Noss CI, Hauchman FS, Olivieri VP (1985) Wat Res 20: 351

    Google Scholar 

  60. Hodgen HW, Ingols RS (1954) Anal Chem 26: 1224

    Google Scholar 

  61. Ozawa T, Kwan T (1983) Chem Pharm Bull 31: 2864

    CAS  Google Scholar 

  62. Ozawa T, Kwan T (1984) Chem Pharm Bull 32: 1589

    Google Scholar 

  63. Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17: 1213, 1229

    Google Scholar 

  64. Wajon JE, Rosenblatt DH, Burrows EP (1982) Environ Sci Technol 16: 396

    CAS  Google Scholar 

  65. Grimley E, Gordon G (1973) J Inorg Nucl Chem 35: 2388

    Google Scholar 

  66. Hoigné, Bader H (1994) Wat Res 28 (1): 45

    Google Scholar 

  67. Tratnyek PG, Hoigné J (1994) Wat Res 28: 57

    CAS  Google Scholar 

  68. Alfassi ZB, Huie RE, Neta P (1986) J Phys Chem 90: 4156

    CAS  Google Scholar 

  69. Exner O (1988) Correlation analysis of chemical data. Plenum Press, NY

    Google Scholar 

  70. Eberson L (1987) Electron transfer reactions in organic chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  71. Spanggord RJ (1978) Private communication. Stanford Research Inst, Stanford, CA

    Google Scholar 

  72. Glabisz U (1968) The reactions of chlorine dioxide with components of phenolic wastewater - Summary. Monograph 44, Polytechnic University, Szcecin, Poland

    Google Scholar 

  73. Dodgen H, Taube H (1949) J Amer Chem Soc 71: 2501

    CAS  Google Scholar 

  74. Sarkanen KV, Kakehi K, Murphy RA, White H (1962) Tappi 45: 24

    CAS  Google Scholar 

  75. Trevors JT, Bursuraba J (1980) Bull Environ Contam Toxicol 25: 672

    CAS  Google Scholar 

  76. Rook JJ (1978) J Environ Sci Health A13: 91

    Google Scholar 

  77. von Gunten U, Hoigné J (1992) J Water SRT - Aqua 41: 299

    Google Scholar 

  78. Lindgren BO, Svahn CM, Widmark G (1965) Acta Chem Scand 19: 7

    CAS  Google Scholar 

  79. Lindgren BO, Svahn CM (1966) Acta Chem Scand 20: 211

    CAS  Google Scholar 

  80. Rav-Acha Ch, Choshen E, Sarel S (1986) Heiv Chim Acta 69: 1728

    CAS  Google Scholar 

  81. Rav-Acha Ch, Choshen E (1987) Environ Sci Technol 21: 1069

    CAS  Google Scholar 

  82. Choshen E, Blitz R, Rav-Acha Ch (1986) Tetrahed Lett 49: 5989

    Google Scholar 

  83. Rav-Acha Ch, Choshen E, Blitz R, Grafstein O (1989) In: Jolley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects, vol 6. Lewis, Chelsea, MI, pp 849–858

    Google Scholar 

  84. Bergson G (1964) Acta Chem Scand 18: 2003

    CAS  Google Scholar 

  85. Hine J (1962) Physical organic chemistry, 2nd edn. McGraw-Hill, Tokyo, p 72

    Google Scholar 

  86. Noyce DS, King PA, Lane CA, Reed WL (1962) J Amer Chem Soc 84: 1678

    Google Scholar 

  87. McManus SP (1973) Organic reactive intermediates. Academic Press, NY

    Google Scholar 

  88. Kolar JJ, Lindgren BO (1982) Acta Chem Scand 36: 599

    Google Scholar 

  89. Lindgren BO, Nilsson T (1974) Acta Chem Scand 28: 847

    Google Scholar 

  90. Bull RJ, Kopfler FC (1991) Health effects of disinfectants and disinfection by-products. Monograph, American Water Works Association Research Foundation, Denver, CO

    Google Scholar 

  91. Taylor DH, Pfohl RJ (1985) In: Jolley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects, vol 5. Lewis, Chelsea MI, pp 355–364

    Google Scholar 

  92. Toth GP, Long RE, Smith MK (1990) J Toxicol Environ Health 31: 29

    CAS  Google Scholar 

  93. Rav-Acha Ch, Blitz R (1984) Wat Res 19: 1273

    Google Scholar 

  94. Pullman A, Pullman B (1955) Adv Cancer Res 3: 117

    CAS  Google Scholar 

  95. Dewar MJS, Lepley AR (1961) J Am Chem Soc 83: 4560

    CAS  Google Scholar 

  96. Richert JK, Kuute H, Engelhardt K, Bornett J (1971) Arch Hyg Bakt 155: 18

    Google Scholar 

  97. Likkonen RJ, Lin S, Oyler AR, Lukasewyes MT, Cox DA, Yu ZJ, Carlson RM (1983) In: Jolley RL, Brungs WA, Cumming RB (eds) Water chlorination: chemistry, environmental impact and health effects, vol 4. Ann Arbor Science, Ann Arbor MI, pp 151–165

    Google Scholar 

  98. Richert JK (1968) Arch Hyg Bakt 152: 265

    Google Scholar 

  99. de Greef E, Morris JC, van Kreijl CF, Morra CFH (1980) In: Jolley RL, Brungs WA, Cumming RB (eds) Water chlorination: chemistry, environmental impact and health effects, vol 3. Ann Arbor Science, Ann Arbor MI, pp 913–924

    Google Scholar 

  100. Richardson SD, Thruston AD Jr, Collette TW, Patterson KS, Lykins Jr BW, Majetich G, Zhang Y (1994) Environ Sci Technol 28: 592

    CAS  Google Scholar 

  101. Stevens AA, Seeger RD, Slocum CJ (1978) In: Rice RG, Cotruvo JA (eds) Ozone/chlorine dioxide oxidation products of organic materials. Ozone Press International, Cleveland OH, pp 383–399

    Google Scholar 

  102. Paluch K, Otto J, Kozlowski K (1965) Rocznicki Chem 39: 1603

    CAS  Google Scholar 

  103. Somsen RA (1960) Tappi 43: 154

    CAS  Google Scholar 

  104. His IE (1955) Tr Leninger Tech Int 16: 62

    Google Scholar 

  105. Becker ES, Hamilton JK, Lucke WE (1965) Tappi 48: 60

    CAS  Google Scholar 

  106. Otto J, Paluch K (1965) Rocznicki Chem 39: 171

    Google Scholar 

  107. Hoigné J, Bader H (1982) Vom Wasser 59: 253

    Google Scholar 

  108. Buescher CA, Douyherty JH, Skrinde RT (1964) J Water Pollut Control Fed 36: 1005

    CAS  Google Scholar 

  109. Robeck GG, Dostal KA, Cohen JM, Kreiss I JF (1965) J Am Water Works Assoc 57: 181

    CAS  Google Scholar 

  110. Mason (Zelicovitz) Y, Choshen E, Rav-Acha Ch (1990) Wat Res 24: 11

    Google Scholar 

  111. Cohen JM, Kamphake LJ, Lemake PE, Henerson C, Woodward RL (1960) J Am Water Works Assoc 52: 1551

    CAS  Google Scholar 

  112. Gomaa HM, Faust SD (1972) In: Gould RF (ed) Advances in chemistry series, vol. 111. American Chem Soc, Washington DC

    Google Scholar 

  113. Ames BN, Yanofsky C (1971) In: Hollaender A (ed) Chemical mutagens: principles and methods for their detection, vol 1. Plenum Press, NY, pp 267–282

    Google Scholar 

  114. Ames BN, McCann J, Yamasaki E (1975) Mutat Res 31: 347

    CAS  Google Scholar 

  115. Levin DE, Hollstein M, Christman MF, Schwiers EA, Ames BN (1982) Proc Natl Acad Sci USA 79: 7445

    CAS  Google Scholar 

  116. Kool HJ, van Kreijl CF, Hrubec J (1985) In: Jolley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects, vol 5. Lewis, Chelsea MI, pp 187–205

    Google Scholar 

  117. Kool HJ, van Kreijl CF, van Kranen HJ, de Greef E (1981) Chemosphere 10: 85

    CAS  Google Scholar 

  118. Zoeteman BCJ, Hrubec J, de Greef E, Kool HJ (1982) Environ Health Presp 46: 197

    CAS  Google Scholar 

  119. Guttman-Bass N, Bairey-Albuquerque M, Ulitzur S, Chartrand A, Rav-Acha C (1987) Environ Sci Technol 21: 252

    CAS  Google Scholar 

  120. Meier JR, Lingg RD, Bull RJ (1983) Mutat Res 118: 25

    CAS  Google Scholar 

  121. Rav-Acha Ch, Serri A, Choshen E, Limoni B (1984) Wat Sci Tech 17: 611

    Google Scholar 

  122. Noach MG, Doerr RL (1978) In Jolley RL, Gorchev H, Hamilton DH Jr (eds) Water chlorination: chemistry, environmental impact and health effects, vol 2. Ann Arbor Science, Ann Arbor MI, pp 49–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to my admired teacher and friend, Professor Shalom Sarel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rav-Acha, C. (1998). Transformation of Aqueous Pollutants by Chlorine Dioxide: Reactions, Mechanisms and Products. In: Hrubec, J. (eds) Quality and Treatment of Drinking Water II. The Handbook of Environmental Chemistry, vol 5 / 5C. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68089-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68089-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14774-0

  • Online ISBN: 978-3-540-68089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics