Skip to main content

Potential Mechanisms by which Statins Modulate the Development of Acute Lung Injury

  • Conference paper
Intensive Care Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2007))

Abstract

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by acute hypoxemic respiratory failure and bilateral pulmonary infiltrates that are not attributable to left atrial hypertension [1]. ALI/ARDS is a heterogeneous disease with a complex pathophysiology that may occur in response to a direct pulmonary or indirect systemic injury [1]. ALI and ARDS are different spectrums of the same condition. ALI is characterized by a PaO2/FiO2 ratio of less than 300 mmHg (40 kPa). ARDS, the more severe end of the spectrum on the basis of oxygenation criteria, is defined by a PaO2/FiO2 ratio of less than 200 mmHg (26 kPa). A recent prospective cohort study estimated the incidence of ALI to be 79/100,000 person years [2]. Mortality remains high although more recent trials have reported a lower mortality [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349

    Article  CAS  PubMed  Google Scholar 

  2. Rubenfeld GD (2005) Incidence and outcomes in acute lung injury. N Engl J Med 363: 1685–1693

    Article  Google Scholar 

  3. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  4. The National Heart Lung and Blood Institute Acute Respiratory Distress Network (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  Google Scholar 

  5. Hager DN, Krishnan JA, Hayden JL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed  Google Scholar 

  6. Perkins G, McAuley D, Thickett D, Gao F (2006) The b-Agonist Lung Injury Trial (BALTI) A randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173:281–287

    Article  CAS  PubMed  Google Scholar 

  7. The Long term Intervention with Pravastatin in Ischemic Disease (LIPID) study group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary artery disease and a broad range of cholesterol levels. N Engl J Med 339:1349–1357

    Article  Google Scholar 

  8. Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD (1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome Am J Respir Crit Care Med 150:113–122

    CAS  PubMed  Google Scholar 

  9. Frank J, Wray C, McAuley D, Schwendener R, Matthay M (2006) Alveolar macrophages contribute to epithelial barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291:L1191–1198

    Article  CAS  PubMed  Google Scholar 

  10. Meduri GU, Headley S, Kohler G, et al (1995) Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107:1062–1073

    Article  CAS  PubMed  Google Scholar 

  11. O’Kane CM, Frank JA, McAuley DF (2004) Matrix metalloproteases; a potential role in the pathogenesis of the acute respiratory distress syndrome. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 287–300

    Google Scholar 

  12. Warner RL, Beltran L, Younkin EM, et al (2001) Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Respir Cell Mol Biol 24:537–544

    CAS  PubMed  Google Scholar 

  13. Pugin J, Verghese G, Widmer MC, Matthay MA (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27:304–312

    Article  CAS  PubMed  Google Scholar 

  14. Fligiel S, Standiford T, Fligiel H, et al (2006) Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol 37:422–430

    Article  CAS  PubMed  Google Scholar 

  15. McAuley D, Frank J, Fang X, Matthay M (2004) Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med 32:1470–1476

    Article  CAS  PubMed  Google Scholar 

  16. Perkins G, McAuley D, Gao F, Thickett D (2004) Intravenous salbutamol reduced alveolarcapillary permeability and extra-vascular lung water in ARDS. Thorax 59(Suppl II):T1 (abst)

    Google Scholar 

  17. Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–1500

    CAS  PubMed  Google Scholar 

  18. Weitz-Schmidt G WK, Brinkmann V, et al (2001) Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 7:687–692

    Article  CAS  PubMed  Google Scholar 

  19. Dichtl W DJ, Frick M, Alber HF, et al (2003) HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:58–63

    Article  CAS  PubMed  Google Scholar 

  20. Sen-Banerjee S, Mir S, Lin Z, et al (2005) Kruppel-Like Factor 2 as a Novel Mediator of Statin Effects in Endothelial Cells. Circulation 112:720–726

    Article  CAS  PubMed  Google Scholar 

  21. Martin G, Duez H, Blanquart C, et al (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARá and induces HDL apoA-I. J Clin Invest 107:1423–1432

    Article  CAS  PubMed  Google Scholar 

  22. Senokuchi T, Matsumura T, Sakai M, et al (2005) Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small g protein-p38 MAPK pathway. J Biol Chem 280:6627–6633

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson JR, Barnard JW, Grigoryev DN, et al (2005) Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 288:L1026–1032

    Article  CAS  PubMed  Google Scholar 

  24. Pirat A, Zeyneloglu P, Aldemir D, et al (2006) Pretreatment with simvastatin reduces lung injury related to intestinal ischemia-reperfusion in rats. Anesth Analg 102:225–232

    Article  CAS  PubMed  Google Scholar 

  25. Naidu BV, Woolley SM, Farivar AS, Thomas R, Fraga C, Mulligan MS (2003) Simvastatin ameliorates injury in an experimental model of lung ischemia-reperfusion. J Thorac Cardiovasc Surg 126:482–489

    Article  CAS  PubMed  Google Scholar 

  26. Kaneider NC, Reinisch CM, Dunzendorfer S, Meierhofer C, Djanani A, Wiedermann CJ (2001) Induction of apoptosis and inhibition of migration of inflammatory and vascular wall cells by cerivastatin. Atherosclerosis 158:23–33

    Article  CAS  PubMed  Google Scholar 

  27. Weber C, Erl W, Weber KS, Weber PC (1997) HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 30:1212–1217

    Article  CAS  PubMed  Google Scholar 

  28. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E (1999) Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 100:230–235

    CAS  PubMed  Google Scholar 

  29. Diomede L, Albani D, Sottocorno M, et al (2001) In vivo Anti-Inflammatory Effect of Statins Is Mediated by Nonsterol Mevalonate Products. Arterioscler Thromb Vasc Biol 21:1327–1332

    Article  CAS  PubMed  Google Scholar 

  30. Rezaie-Majd A, Maca T, Bucek R, et al (2002) Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 22:1194–1199

    Article  PubMed  Google Scholar 

  31. Steiner S, Speidl WS, Pleiner J, et al (2005) Simvastatin blunts endotoxin-induced tissue factor in vivo. Circulation 111:1841–1846

    Article  CAS  PubMed  Google Scholar 

  32. Li JJ, Wang Y, Nie SP, Zhang CY, et al (2007) Reduction of C-reactive protein by a single 80 mg of simvastatin in patients with unstable angina. Clin Chim Acta 376:163–167

    Article  CAS  PubMed  Google Scholar 

  33. Nagashima H, Aoka Y, Sakomura Y, et al (2002) A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall. J Vasc Surg 36:158–163

    Article  PubMed  Google Scholar 

  34. Aikawa M, Rabkin E, Sugiyama S, et al (2001) An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103:276–283

    CAS  PubMed  Google Scholar 

  35. Koh K, Ahn J, Jin D, et al (2004) Comparative effects of statin and fibrate on nitric oxide bioactivity and matrix metalloproteinase in hyperlipidemia. Int J Cardiol 97:239–244

    Article  PubMed  Google Scholar 

  36. Wassmann S, Laufs U, Müller K, et al (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305

    Article  CAS  PubMed  Google Scholar 

  37. Laufs U, La Fata V, Liao J (1997) Inhibition of 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 272:31725–31729

    Article  CAS  PubMed  Google Scholar 

  38. Jacobson JR, Dudek SM, Konstantin G, et al (2004) Cytoskeletal activation and altered gene expression in endothelial barrier regulation by simvastatin. Am J Respir Cell Mol Biol 30:662–670

    Article  CAS  PubMed  Google Scholar 

  39. Kario K, Matsuo T, Hoshide S (1999) Lipid-lowering therapy corrects endothelial cell dysfunction in a short time but does not affect hypercoagulable state even after long-term use in hyperlipidemic patients. Blood Coagul Fibrinolysis 10:269–276

    Article  CAS  PubMed  Google Scholar 

  40. Prabhakaran P, Ware LB, White KE, Cross MT, Matthay MA, Olman MA (2003) Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 285:L20–28

    CAS  PubMed  Google Scholar 

  41. Bourcier T, Libby P (2000) Expression by human vascular smooth muscle and endothelial cells HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1. arterioscler. Thromb Vasc Biol 20:556–562

    CAS  Google Scholar 

  42. Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383

    CAS  PubMed  Google Scholar 

  43. Hayden JM, Swartfiguer J, Szelinger S, et al (2005) Lysophosphatidylcholine stimulation of alveolar epithelial cell interleukin-8 production and neutrophil chemotaxis is inhibited by statin treatment. Proc Am Thorac Soc 2:A72 (abst)

    Google Scholar 

  44. Merx MW, Liehn EA, Janssens U, et al (2004) HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation 109:2560–2565

    Article  CAS  PubMed  Google Scholar 

  45. Almog Y, Shefer A, Novack V, et al (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110:880–885

    Article  CAS  PubMed  Google Scholar 

  46. Liappis AP, Kan VL, Rochester CG, Simon GL (2001) The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 33:1352–1357

    Article  CAS  PubMed  Google Scholar 

  47. Kruger P FK, Cook D, Jones M, Nimmo G (2006) Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med 32:75–79

    Article  PubMed  Google Scholar 

  48. Hackam DG MM, Li P, Redelmeier DA (2006) Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet 367:413–418

    Article  CAS  PubMed  Google Scholar 

  49. British Medical Association and Royal Pharmaceutical Society of Great Britain (2006) British National Formulary. Pharmaceutical Press, London

    Google Scholar 

  50. de Lemos JA, Blazing MA, Wiviott SD, et al (2004) Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes JAMA 292:1307–1316

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this paper

Cite this paper

Craig, T., O’Kane, C., McAuley, D. (2007). Potential Mechanisms by which Statins Modulate the Development of Acute Lung Injury. In: Intensive Care Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49433-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49433-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49432-4

  • Online ISBN: 978-3-540-49433-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics