Skip to main content

Controls on the Deformation of the Central and Southern Andes (10–35° S): Insight from Thin-Sheet Numerical Modeling

  • Chapter
The Andes

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

What mechanisms and conditions formed the Central Andean orocline and the neighboring Altiplano Plateau? Why does deformation decrease going from the central to the Southern Andes? To answer these questions, we present a new thin-sheet model that incorporates three key features of subduction orogenesis: (1) significant temporal and spatial changes in the strength of the continental lithosphere in the upper plate; (2) variable interplate coupling along a weak subduction channel with effectively anisotropic mechanical properties; and (3) channeled flow of partially molten lower crust in the thickened upper plate. Application of this model to the present kinematic situation between the Nazca and South American Plates indicates that the deformed Andean lithosphere is significantly weaker than the undeformed South American foreland, and that channel flow of partially melted lower crust smoothes topographic relief. This channel flow is, therefore, inferred to control intra-orogenic topography and is primarily responsible for the development of the Andean Plateau since the Miocene. A parameter study shows that the decrease in shortening rates from the central to the Southern Andes can be attributed to the weakening of the orogenic Andean lithosphere and to along-strike variations in interplate coupling within the subduction zone. The current rates of deformation are reproduced in the model if: the Andean lithosphere is assumed to be 5–15 times weaker than the lithosphere of the Brazilian shield; interplate coupling is assumed to be relatively weak, such that the subduction zone in the vicinity of the Central Andes is some 10–20 times weaker than the Andean lithosphere; and coupling itself decreases laterally by some 2–5 times going from the central to the Southern Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Arriagada C, Roperch P, Mpodozis C, Dupont-Nivet G, Cobbold PR, Chauvin A, Cortés J (2003) Paleogene clockwise tectonic rotations in the forearc of Central Andes, Antofagasta region, Northern Chile. J Geophys Res 108(B1): doi 10.1029/ 2001JB001598

    Google Scholar 

  • Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna Plateau. Earth Planet Sci Lett 199:373–388

    Article  Google Scholar 

  • Babeyko AY, Sobolev SV, Vietor T, Oncken O, Trumbull RB (2006) Numerical study of weakening processes in the Central Andean backarc. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 495–512, this volume

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res 109(B06406): doi 10.1029/2003JB002809

    Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107(B5): doi 10.1029/2001JB000391

    Google Scholar 

  • Butler RF, Richards DR, Sempere T, Marshall LG (1995) Paleomagnetic determinations of vertical-axis tectonic rotations from Late Cretaceous and Paleocene strata of Bolivia. Geology 23:799–802

    Article  Google Scholar 

  • Carey SW (1958) The orocline concept in geotectonics. Proc Royal Soc Tasmania 89:255–288

    Google Scholar 

  • Clark MK, Royden LH (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703–706

    Article  Google Scholar 

  • Cloos M, Shreve RL (1988a) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys 128:455–500

    Article  Google Scholar 

  • Cloos M, Shreve RL (1988b) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussions. Pure Appl Geophys 128:501–545

    Article  Google Scholar 

  • Dewey JF (1988) Extensional collapse of orogens. Tectonics 7(6):1123–1139

    Article  Google Scholar 

  • England PC, Houseman GA (1988) The mechanics of the Tibetan Plateau. Phil Trans Royal Soc London A 326:301–320

    Google Scholar 

  • England P, McKenzie D (1982) A thin viscous sheet model for continental deformation. Geophys J R Astr Soc 70:295–321. [Correction: England P, McKenzie D (1983) Correction to: A thin viscous sheet model for continental deformation Geophys J R Astr Soc 73:523–532]

    Google Scholar 

  • Gansser A (1973) Facts and theories on the Andes. J Geol Soc London 129:93–131

    Google Scholar 

  • Gerbault M, Martinod J, Hérail G (2005) Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399:59–72

    Article  Google Scholar 

  • Giese P, Scheuber E, Schilling FR, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the Moho-Discontinuity. J S Am Earth Sci 12:201–220

    Article  Google Scholar 

  • Götze H-J, Kirchner A (1997) Interpretation of gravity and geoid in the Central Andes between 20° and 29° S. J S Am Earth Sci 10:179–188

    Article  Google Scholar 

  • Haberland C, Rietbrock A (2001) Attenuation tomography in the western sentral Andes: a detailed insight into the structure of a magmatic arc. J Geophys Res 106(B6):11151–11167

    Article  Google Scholar 

  • Haberland C, Rietbrock A, Schurr B, Brasse H (2003) Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau. Geophy Res Lett 30(18): doi 10.1029/2003GL017492,2003

    Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108(B1): doi 10.1029/2001JB001129

    Google Scholar 

  • Henry SG, Pollack HN (1988) Terrestrial heat flow above the Andean subduction zone, Bolivia and Peru. J Geophys Res 93:15153–15162

    Google Scholar 

  • Hindle D, Kley J (2002) Displacements, strains and rotations in the Central Andean Plate boundary. In: Stein S, Freymuller J (eds) Plate boundary zones. AGU Geodynamic Series 30, pp 135–144

    Google Scholar 

  • Hindle D, Kley J, Klosko E, Stein S, Dixon T, Norabuena E (2002) Consistency of geologic and geodetic displacements in Andean orogenesis. Geophys Res Lett 29: doi 10.1029/2001GL013757

    Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • Husson L, Ricard Y (2004) Stress balance above subduction: application to the Andes. Earth Planet Sci Lett 222:1037–1050

    Article  Google Scholar 

  • Husson L, Sempere T (2003) Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys Res Lett 30: doi 10.1029/ 2002GL016877

    Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean plateau and bending of the Bolivian Orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • James DE (1971) Andean crust and upper mantle structure. J Geophys Res 76:3246–3271

    Article  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, Central Andes. J Geophys Res 99(B12):24323–24339

    Article  Google Scholar 

  • Kirchner A, Götze H-J, Schmitz M (1996) 3D-density modelling with seismic constraints in the Central Andes. Phys Chem Earth 21:289–293

    Article  Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickening in the Central Andes: how good is the correlation? Geology 26(8):723–726

    Article  Google Scholar 

  • Kley J, Monaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301:75–94

    Article  Google Scholar 

  • Kwon YW, Bang H (1997) The finite element method using MATLAB. CRC Press, New York

    Google Scholar 

  • Lamb S (2000) Active deformation in the Bolivian Andes, South America. J Geophys Res 105:25627–25653

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Guynn JH (2004) Origin of the lithospheric stress field. J Geophys Res 109(B01408): doi 10.1029/ 2003JB002467

    Google Scholar 

  • Liu M, Yang Y, Stein S, Klosko E (2002) Crustal shortening and extension in the Central Andes: insights from a viscoelastic model. In: Stein S, Freymueller J (eds) Plate boundary zones. AGU Geodynamics Series 30, doi 10/1029/030GD19

    Google Scholar 

  • MacFadden B, Anaya F, Swisher C III (1995) Neogene paleomagnetism and oroclinal bending of the Central Andes of Bolivia. J Geophys Res 100:8153–8167

    Article  Google Scholar 

  • Marques FO, Cobbold PR (2002) Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics 348:247–268

    Article  Google Scholar 

  • Medvedev S, Beaumont C (in press) Growth of continental plateaux by channel injection: constraints and thermo-mechanical consistency. Geol Soc London Spec Pub

    Google Scholar 

  • Medvedev SE, Podladchikov YY (1999a) New extended thin sheet approximation for geodynamic applications — I. Model formulation. Geophys J Int 136:567–585

    Article  Google Scholar 

  • Medvedev SE, Podladchikov YY (1999b) New extended thin sheet approximation for geodynamic applications — II. 2D examples. Geophys J Int 136:586–608

    Article  Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1992) A digital age map of the ocean floor. SIO Reference Series 93-30D

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Peacock SM (1987)Thermal effects of metamorphic fluids in subduction zones. Geology 15:1057–1060

    Article  Google Scholar 

  • Ranalli G (1995) Rheology of the Earth, 2nd Ed. Chapman Hall

    Google Scholar 

  • Riller U, Oncken O (2003) Growth of the Central Andean Plateau by tectonic segmentation is controlled by the gradient in crustal shortening. J Geol 111:367–384

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28

    Article  Google Scholar 

  • Rousse S, Gilder S, Farber D, McNulty B, Torres V (2002) Paleomagnetic evidence of rapid vertical-axis rotation in the Peruvian Cordillera, ca. 8 Ma. Geology 30:75–78

    Article  Google Scholar 

  • Rousse S, Gilder S, Farber D, McNulty B, Patriat P, Torres V, Sempere T (2003) Paleomagnetic tracking of mountain building in the Peruvian Andes since 10 Ma. Tectonics 22(5): doi 10.1029/ 2003TC001508

    Google Scholar 

  • Royden L (1996) Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. J Geophys Res 101:17679–17705

    Article  Google Scholar 

  • Sheffels BM (1995) Mountain building in the Central Andes: an assessment of the contribution of crustal shortening. Inter Geol Rev 37:128–153

    Article  Google Scholar 

  • Shen F, Royden LH, Burchfiel BC (2001) Large-scale crustal deformation of the Tibetan Plateau. J Geophys Res 106:6793–6816

    Article  Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279:60–63

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY, Koulakov I, Oncken O (2006) Mechanism of the Andean orogeny: insight from numerical modeling. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 513–536, this volume

    Google Scholar 

  • Springer M (1999) Interpretation of heat-flow density in the Central Andes. Tectonophysics 306:377–395

    Article  Google Scholar 

  • Springer M, Förster A (1998) Heatflow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Article  Google Scholar 

  • Swenson J, Beck S, Zandt G (2000) Crustal structure of the Altiplano from broadband regional waveform modeling: implications for the composition of thick continental crust. J Geophys Res Vol 105(B1):607–621

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics — applications of continuum physics to geological problems. John Wiley, New York

    Google Scholar 

  • Vanderhaeghe O, Medvedev S, Beaumont C, Fullsack P, Jamieson RA (2003) Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. Geophys J Int 153:27–51

    Article  Google Scholar 

  • Whitman D, Isacks BL, Chatelain JL, Chiu JM, Perez A (1992) Attenuation of high-frequency seismic waves beneath the Central Andean plateau. J Geophys Res 97(B13):19929–19947

    Google Scholar 

  • Wigger P, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn WD, Martinez E, Ricaldi E, Röwer P, Viramonte J (1994) Variation in the crustal structure of the southern Central Andes deduced from seismic refraction investigations. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 23–48

    Google Scholar 

  • Yang Y, Liu M, Stein S (2003) A 3-D geodynamic model of lateral crustal flow during Andean mountain building. Geophys Res Lett 30(21): doi 10.1029/2003GL018308

    Google Scholar 

  • Yañez G, Cembrano J (2004) Role of viscous plate coupling in the late Tertiary Andean tectonics. J Geophys Res 109(B02407)

    Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger P, Röwer P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961

    Article  Google Scholar 

  • Zandt G, Velasco A, Beck S (1994) Composition and thickness of the southern Altiplano crust, Bolivia. Geology 22:1003–1006

    Article  Google Scholar 

  • Zandt G, Leidig M, Chmielowski J, Baumont D (2003) Seismic detection and characterization of the Altiplano-Puna Magma Body, Central Andes. Pure Appl Geophys 160:789–807

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Medvedev, S., Podladchikov, Y., Handy, M.R., Scheuber, E. (2006). Controls on the Deformation of the Central and Southern Andes (10–35° S): Insight from Thin-Sheet Numerical Modeling. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_23

Download citation

Publish with us

Policies and ethics