Skip to main content

Molecular Architecture of Helicoidal Proteinaceous Eggshells

  • Chapter
Structure, Cellular Synthesis and Assembly of Biopolymers

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 19))

Abstract

Several extracellural fibrous structures are known to have helicoidal architecture. Such structures include arthropod cuticles, vertebrate tendons, plant cell walls etc. The widespread occurrence of the helicoidal structure in spherical shells, such as eggshells, spore walls, cyst walls, and others, and its correlation with the mechanical strength it provides is intriguing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aebi U, Fowler WE, Rew P, Sun TT (1983) The fibrilar substructure of keratin filaments unraveled. J Cell Biol 97:1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Aggeli A, Hamodrakas SJ, Kanitopoulou K, Konsolaki M (1991) Tandemly repeating peptide motifs and their secondary structure in Ceratitis capitata eggshell proteins Ccs36 an Ccs38. Int J Biol Macromol 13:307–315

    Article  PubMed  CAS  Google Scholar 

  • Anderson E (1967) The formation of the primary envelope during oocyte differentiation in teleosts. J Cell Biol 35:193–212

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Barker WC, Hunt LT, George DG, Yeh LS, Chen HR, Blomquist MC, Scibel-Rose EI, Elzanowski A, Hong MK, Ferrick DA, Bair JK, Chen SL, Ledley RS (1986) Protein sequence database. National Biomedical Research Foundation, Georgetown University, Washington, DC

    Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasoumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  • Blau HM, Kafatos FC (1979) Morphogenesis of the silkmoth chorion: patterns of distribution and insolubilization of the structural proteins. Dev Biol 72:211–225

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York

    Google Scholar 

  • Böuligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4:189–217

    Article  PubMed  Google Scholar 

  • Bouligand Y (1978a) Cholesteric order in biopolymers. Am Chem Soc Symp Ser 74:237–247

    CAS  Google Scholar 

  • Bouligand Y (1978b) Liquid crystalline order in biological materials. In: Blumstein A (ed) Liquid crystalline order in polymers. Academic Press, New York, pp 261–297

    Chapter  Google Scholar 

  • Burke WD, Eickbush TH (1986) The silkmoth late chorion locus. I. Variation within two paired multigene families. J Mol Biol 190:343–356

    Article  PubMed  CAS  Google Scholar 

  • Carey PR (1982) Biochemical applications of Raman and resonance Raman spectroscopies. Academic Press, New York

    Google Scholar 

  • Chothia C, Janin J (1982) Orthogonal packing of ß-pleated sheets in proteins. Biochemistry 21:3955–3965

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1977) ß-turns in proteins. J Mol Biol 115:135–175

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47:45–148

    PubMed  CAS  Google Scholar 

  • Cohen FE, Sternberg M JE, Taylor WR (1981) Analysis of the tertiary structure of protein ß-sheet sandwiches. J Mol Biol 148:253–272

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1953) The packing of a-helices in simple coiled-coils. Acta Cryst 6:689–697

    Article  CAS  Google Scholar 

  • Davenport J, Lonning S, Kjorsvik E (1986) Some mechanical and morphological properties of the chorions of marine teleost eggs. J Fish Biol 29:289–301

    Article  Google Scholar 

  • Eickbush TH, Kafatos FC (1982) A walk in the chorion locus of Bombyx mori. Cell 29:633–643

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Rodakis GC, Lekanidou R, Kafatos FC (1985) A complex set of early chorion DNA sequences from Bombyx mori. Dev Biol 112:368–376

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach H, Dittrrich V, Zissler D (1987) Eggshell fine structure of three lepidopteran pests: Cydia pomonella (Tortricidae), Heliothis virescens and Spodoptera littoralis (Noctuidae). Int J Insect Morphol Embryol 16(3):201–219

    Article  Google Scholar 

  • Filshie BK, Rogers GE (1962) An electron microscope study of the fine structure of feather keratin. J Cell Biol 13:1–12

    Article  PubMed  CAS  Google Scholar 

  • Filshie BK, Smith DS (1980) A proposed solution to a fine-structural puzzle: the organisation of gill cuticle in a crayfish (panulirus). Tissue Cell 12(l):209–226

    Article  PubMed  CAS  Google Scholar 

  • Flugel H (1967) Licht- und elektronenmikroskopiche Untersuchungen an Oozyten und Eiern einiger Knochenfische. Z Zellforsch Mikrosk Anat 83:82–116

    Article  PubMed  CAS  Google Scholar 

  • Fraser RDB, McRae TP (1959) Molecular organization in feather keratin. J Mol Biol 1:387–397

    Article  CAS  Google Scholar 

  • Fraser RDB, McRae TP (1973) Conformation in fibrous proteins. Academic Press, New York

    Google Scholar 

  • Fraser RDB, McRae TP (1976) The molecular structure of feather keratin. In: Frith HJ, Calaby JH (eds) Proc 16th Int Ornithological Congress, Canberra. Australian Academy of Science, Canberra, pp 443–451

    Google Scholar 

  • Fnedel MG (1922) Les états mésomorphes de la matière. Ann Phys (Paris) 18:273–474

    Google Scholar 

  • Frushour BJ, Koenig JL (1975) Raman Spectroscopy of proteins. In: Clark RJH, Hester RE (eds) Advances in infrared and Raman spectroscopy, vol I. Heyden, London, p 35

    Google Scholar 

  • Furneaux PJS, Mackay AL (1972) Crystalline protein in the chorion of insect eggshells. J Ultrastruct Res 38:343–359

    Article  PubMed  CAS  Google Scholar 

  • Geddes AJ, Parker KD, Atkins EDT, Beighton E (1968) Cross-ß conformation in proteins. J Mol Biol 32:343–358

    Article  PubMed  CAS  Google Scholar 

  • Giraud MM, Castanet J, Meunier FJ, Bouligand Y (1978) The fibrous structure of coelacanth scales: a twisted “plywood”. Tissue Cell 10:671–686

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith MR, Kafatos FC (1984) Developmentally regulated genes in silkmoths. Annu Rev Genet 18:443–487

    Article  PubMed  CAS  Google Scholar 

  • Green NM, Wrigley NG, Russel WC, Martin SR, McLachlan AD (1983) Evidence for a repeating cross-ß sheet structure in the adenovirus fibre. EMBO J 2:1357–1365

    PubMed  CAS  Google Scholar 

  • Gregg K, Wilton SD, Parry DAD, Rogers GE (1984) A comparison of genomic coding sequences for feather and scale keratins: structural and evolutionary implications. EMBO J 3:175–181

    PubMed  CAS  Google Scholar 

  • Grierson JP, Neville AC (1981) Helicoidal architecture offish eggshell. 13:819–830

    CAS  Google Scholar 

  • Groot EP, Alderdice DF (1985) Fine structure of the external egg membrane of five species of Pacific salmon and steelhead trout. Can J Zool 63:552–566

    Article  Google Scholar 

  • Gubb D (1975) A direct visualisation of helicoidal architecture in Carcinus maenas and Halocynthia papulosa by scanning electron microscopy. Tissue Cell 7:19–32

    Article  PubMed  CAS  Google Scholar 

  • Hagenmaier HE, Schmitz J, Fohles J (1976) Zum Vorkommen von Isopeptidbindungen in der Eihülle der Regenbogenforelle (Salmo gairdneri Rich). Hoppe-Seyler’s Z Physiol Chem 357:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Hamodrakas SJ (1984) Twisted ß-pleated sheet: the molecular conformation which possibly dictates the formation of the helicoidal architecture of several proteinaceous eggshells. Int J Biol Macromol 6:51–53

    Article  CAS  Google Scholar 

  • Hamodrakas SJ (1988) A protein secondary structure prediction scheme for the IBM PC and compatibles. CABIOS 4:473–477

    PubMed  CAS  Google Scholar 

  • Hamodrakas S J, Kafatos FC (1984) Structural implications of primary sequences from a family of Balbiani ring-encoded proteins in Chironomus. J Mol Evol 20:296–303

    Article  PubMed  CAS  Google Scholar 

  • Hamodrakas S J, Jones CW, Kafatos FC (1982a) Secondary structure predictions for silkmoth chorion proteins. Biochim Biophys Acta 700:42–51

    Article  CAS  Google Scholar 

  • Hamodrakas SJ, Asher SA, Mazur GD, Regier JC, Kafatos FC (1982b) Laser-Raman studies of protein conformation in the silkmoth chorion. Biochim Biophys Acta 703:216–222

    Article  PubMed  CAS  Google Scholar 

  • Hamodrakas SJ, Paulson JR, Rodakis GC, Kafatos FC (1983) X-ray diffraction studies of a silkmoth chorion. Int J Biol Macromol 5:149–153

    Article  CAS  Google Scholar 

  • Hamodrakas SJ, Kamitsos EI, Papanicolaou A (1984) Laser-Raman spectroscopic studies of the eggshell (chorion) of Bombyx mori. Int J Biol Macromol 6: 333–336

    Article  CAS  Google Scholar 

  • Hamodrakas SJ, Etmektzoglou T, Kafatos FC (1985) Amino acid periodicities and their structural implications for the evolutionary conservative central domain of some silkmoth chorion proteins. J Mol Biol 186:583–589

    Article  PubMed  CAS  Google Scholar 

  • Hamodrakas S J, Margaritis LH, Papasideri I and Fowler A (1986) Fine structure of the silkmoth Antheraea polyphemus chorion as revealed by X-ray diffraction and freeze fracturing. Int J Biol Macromol 8:237–242

    Article  Google Scholar 

  • Hamodrakas SJ, Kamitsos EI, Papadopoulou PG (1987) Laser-Raman and infrared spectroscopic studies of protein conformation in the eggshell of the fish Salmo gairdneri. Biochim Biophys Acta 913:163–169

    Article  PubMed  CAS  Google Scholar 

  • Hamodrakas SJ, Bosshard HE, Carlson CN (1988) Structural models of the evolutionary conservative central domain of silk-moth chorion proteins. Prot Eng 2:201–207

    Article  CAS  Google Scholar 

  • Hamodrakas S J, Batrinou A, Christoforatou T (1989) Structural and functional features of Drosophila chorion proteins s36 and s38 from analysis of primary structure and infrared spectroscopy. Int J Biol Macromol 11:307–313

    Article  PubMed  CAS  Google Scholar 

  • Hinton H (1981) Biology of insect eggs. Pergamon Press, Oxford

    Google Scholar 

  • Hojrup P, Andersen SO, Roepstorff P (1986) Isolation, characterization and N-terminal sequence studies of cuticular proteins from the migratory locust Locusta migratoria. Eur J Biochem 154:153–159

    Article  PubMed  CAS  Google Scholar 

  • Hurley DA, Fischer KC (1966) The structure and development of the external membrane in young eggs of the brook trout, Salvelinus fontinallys (Mitschill). Can J Zool 44:173–190

    Article  Google Scholar 

  • Iatrou K, Tsitilou SG, Kafatos FC (1984) DNA sequence transfer between two high-cysteine chorion gene families in Bombyx mori. Proc Natl Acad Sci USA 81:4452–4456

    Article  PubMed  CAS  Google Scholar 

  • Jones CW, Kafatos FC (1980a) Coordinately expressed members of two chorion multi-gene families are clustered, alternating and divergently oriented. Nature 284:635–638

    Article  PubMed  CAS  Google Scholar 

  • Jones CW, Kafatos FC (1980b) Structure, organization and evolution of developmentally regulated chorion genes in a silkmoth. Cell 22:855–867

    Article  PubMed  CAS  Google Scholar 

  • Jones CW, Kafatos FC (1982) Accepted mutations in a gene family: evolutionary diversification of duplicated DNA. J Mol Evol 19:87–103

    Article  PubMed  CAS  Google Scholar 

  • Kafatos FC, Regier JC, Mazur GD, Nadel MR, Blau HM, Petri WH, Wyman AR, Gelinas RE, Moore PB, Paul M, Efstratiadis A, Vournakis JN, Goldsmith MR, Hunsley JR, Baker B, Nardi J, Koehler M (1977) The eggshell of insects: differentiation-specific proteins and the control of their synthesis and accumulation during development. In: Beerman W (ed) Results and problems in cell differentiation, vol 8. Springer, Berlin Heidelberg New York, pp 45–145

    Google Scholar 

  • Kakudo M, Kasai N (1972) X-ray diffraction by polymers. Elsevier, Amsterdam

    Google Scholar 

  • Kawasaki H, Sato H, Suzuki M (1971) Structural proteins in the silkworm eggshells. Insect Biochem 1:130–148

    Article  CAS  Google Scholar 

  • King RC, Aggarwal SK (1965) Oogenesis in Hyalophora cecropia. Growth 29:17–83

    PubMed  CAS  Google Scholar 

  • Kobayashi W (1982) The fine structure and amino acid composition of the envelope of the chum salmon egg. J Fac Sci Hokkaido Univ Ser 6 23:1–12

    Google Scholar 

  • Lecanidou R, Rodakis GC, Eickbush TH, Kafatos FC (1986) Evolution of the silkmoth chorion gene superfamily: gene families CA and CB. Proc Natl Acad Sci USA 83:6514–6518

    Article  PubMed  CAS  Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Livolant F, Bouligand Y (1989) Freeze-fractures in cholesteric mesophases of polymers. Mol Cryst Liq Cryst 166:91–100

    CAS  Google Scholar 

  • Lonning S, Kjorsvik E, Davenport J (1984) The hardening process of the egg chorion of the cod, Gadus morhua L., and lumpsucker, Cyclopterus lumpus L. J Fish Biol 24:505–522

    Article  CAS  Google Scholar 

  • Lotz B, Gouthier-Vassal A, Brack A, Magoshi J (1982) Twisted single crystals of Bombyx mori silk fibroin and related model polypeptides with ß-strueture. J Mol Biol 156:345–357

    Article  PubMed  CAS  Google Scholar 

  • Margaritis LH (1985) Structure and physiology of the eggshell. In: Gilbert LI, Kerkut GA (eds) Comprehensive insect biochemistry, physiology and pharmacology, vol I. Pergamon, Oxford, pp 153–230

    Google Scholar 

  • Marsh RE, Corey RB, Pauling L (1955) The structure of silk fibroin. Biochim Biophys Acta 16:1–34

    Article  PubMed  CAS  Google Scholar 

  • Mazur GD, Regier JC, Kafatos FC (1980) The silkmoth chorion: Morphogenesis of surface structures and its relation to synthesis of specific proteins. Dev Biol 76:305–321

    Article  PubMed  CAS  Google Scholar 

  • Mazur GD, Regier JC, Kafatos FC (1982) Order and defects in the silkmoth chorion, a biological analogue of a cholesteric liquid crystal. In: Akai H, King RC (eds) Insect ultrastructure, vol I. Plenum, New York, pp 150–183

    Google Scholar 

  • McLachlan AD (1977) Analysis of periodic patterns in amino acid sequences: collagen. Biopolymers 16:1271–1297

    Article  PubMed  CAS  Google Scholar 

  • McLachlan AD, Stewart M (1976) The 14-fold periodicity in a-tropomyosin and the interaction with actin. J Mol Biol 103:271–298

    Article  PubMed  CAS  Google Scholar 

  • Neville AC (1975) Biology of the arthropod cutide. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Neville AC (1981) Cholesteric proteins. Mol Cryst Liq Cryst 76:279–286

    Article  CAS  Google Scholar 

  • Neville AC (1986) The physics of helicoids: multidirectional “plywood” structures in biological systems. Phys Bull 37:74–76

    CAS  Google Scholar 

  • Ohzu E, Kusa M (1981) Amino acid composition of the egg chorion of rainbow trout. Annot Zool Jpn 54:241–244

    CAS  Google Scholar 

  • Orcutt BC, George DG, Dayhoff MO (1983) Protein and nucleic acid sequence database systems. Annu Rev Biophys Bioeng 12:419–441

    Article  PubMed  CAS  Google Scholar 

  • Papanicolau AM, Margaritis LH, Hamodrakas SJ (1986) Ultrastructural analysis of chorion formation in the silkmoth Bombyx mori. Can J Zool 64:1158–1173

    Article  Google Scholar 

  • Parker FS (1971) Applications of infrared spectroscopy in biochemistry, biology and medicine. Plenum, New York

    Book  Google Scholar 

  • Parry DAD (1979) Determination of structural information from the amino acid sequences of fibrous proteins. In: Parry DAD, Creamer LK (eds) Fibrous proteins: scientific, industrial and medical aspects, vol I. Academic Press, London, pp 393–427

    Google Scholar 

  • Parry DAD, Fraser RDB, McRae TP (1979) Repeating patterns of amino acid residues in the sequences of some high-sulphur proteins from a-keratin. Int J Biol Macromol 1:17–22

    Article  CAS  Google Scholar 

  • Pau RN (1984) Cloning of cDNA for a juvenile hormone-regulated oothecin mRNA. Biochim Biophys Acta 782:422–428

    Article  CAS  Google Scholar 

  • Rashin AA, Honig B (1984) On the environment of ionizable groups in globular proteins. J Mol Biol 173:515 521

    Google Scholar 

  • Regier JC (1986) Evolution and higher-order structure of architectural proteins in silkmoth chorion. EMBO J 5:1981–1989

    PubMed  CAS  Google Scholar 

  • Regier JC, Kafatos FC (1985) Molecular aspects of chorion formation. In: Gilbert LI, Kerkut GA (eds) Comprehensive insect biochemistry, physiology and pharmacology, vol I, Pergamon, Oxford pp 113–151

    Google Scholar 

  • Regier JC, Vlahos NS (1988) Heterochrony and the introduction of novel modes of morphogenesis during the evolution of moth choriogenesis. J Mol Evol 28:19–31

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Wong JR (1988) Assembly of silkmoth proteins: in vivo patterns of disulphide bond formation. Insect Biochem 18:471–482

    Article  CAS  Google Scholar 

  • Regier JC, Kafatos FC, Goodfliesh R, Hood L (1978a) Silkmoth chorion proteins: sequence analysis of the products of a multigene family. Proc Natl Acad Sci USA 75:390–394

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Kafatos FC, Kramer KJ, Heinrikson RL, Keim PS (1978b) Silkmoth chorion proteins: their diversity, amino acid composition and the NH2-terminal sequence of one component. J Biol Chem 253:1305–1314

    PubMed  CAS  Google Scholar 

  • Regier JC, Mazur GD, Kafatos FC (1980) The silkmoth chorion: morphological and biochemical characterization of four surface regions. Dev Biol 76:286–304

    Article  PubMed  CAS  Google Scholar 

  • Regier JD, Mazur GD, Kafatos FC, Paul M (1982) Morphogenesis of silkmoth chorion: initial framework formation and its relation to synthesis of specific proteins. Dev Biol 92:159–174

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Kafatos FC, Hamodrakas SJ (1983) Silkmoth chorion multigene families constitute a superfamily: comparison of C and B family sequences. Proc Natl Acad Sci USA 80:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Prot Chem 34:167–339

    Article  CAS  Google Scholar 

  • Rill RL, Livolant F, Aldrich HC, Davidson MW (1989) Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organisation of DNA in dinoflagellate chromosomes. Chromo-soma (Berl) 98:280–286

    Article  CAS  Google Scholar 

  • Rodakis GC, Kafatos FC (1982) Origin of evolutionary novelty in proteins: how a high-cysteine chorion protein has evolved. Proc Natl Acad Sci USA 79:3551–3555

    Article  PubMed  CAS  Google Scholar 

  • Rodakis GC, Moschonas NK, Kafatos FC (1982) Evolution of a multigene family of chorion proteins in silkmoths. Mol Cell Biol 2:554–563

    PubMed  CAS  Google Scholar 

  • Rodakis GC, Lekanidou R, Eickbush TH (1984) Diversity in a chorion multigene family created by tandem duplications and a putative gene conversion event. J Mol Evol 20:265–273

    Article  PubMed  CAS  Google Scholar 

  • Rudall KM (1956) Protein ribbons and sheets. In: Lectures on the scientific basis of medicine 5. Athlone Press, London, pp 217–230

    Google Scholar 

  • Schulz GE, Schirmer RH (1978) Principles of protein structure. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsuura H, Shimanouchi T (1975) Interpretation of the doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14:4870–4876

    Article  PubMed  CAS  Google Scholar 

  • Sibanda BL, Thornton JM (1985) ß-hairpin families in globular proteins. Nature 316:170–174

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Telfer WH, Neville AC (1971) Fine structure of the chorion of a moth, Hyalophora cecropia. Tissue Cell 3:477–498

    Article  PubMed  Google Scholar 

  • Spiro TG, Gaber BP (1977) Laser-Raman scattering as a probe of protein structure. Annu Rev Biochem 46:553–572

    Article  PubMed  CAS  Google Scholar 

  • Spoerel NA, Nguyen HT, Eickbush TH, Kafatos FC (1989) Gene evolution and regulation in the chorion complex of Bombyx mori: hybridization and sequence analysis of multiple developmentally middle A/B chorion gene pairs. J Mol Biol 209:1–19

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Vibert PJ (1987) Fibrous protein structure. Academic Press, London

    Google Scholar 

  • Stewart M (1977) The structure of chicken scale keratin. J Ultrastruct Res 60:27–33

    Article  PubMed  CAS  Google Scholar 

  • Sugeta H, Go A, Miyazawa T (1972) S-S and C-S stretching vibrations and molecular conformations of dialkyl disulphides and cystine. Chem Lett 1:83–86

    Article  Google Scholar 

  • Taylor WR (1987) Protein structure prediction In: Bishop MJ, Rawlins CJ (eds) Nucleic acid and protein sequence analysis: a practical approach. IRL Press, Oxford, pp 285–322

    Google Scholar 

  • Telfer WH, Smith DS (1970) Aspects of egg formation. Symp R Entomol Soc Lond 5:165 185

    Google Scholar 

  • Tesoriero JV (1977) Formation of the chorion (zona pellucida) in the teleost Oryzias latipes. 1. Morphology of early oogenesis. J Ultrastruct Res 59:282–291

    Article  PubMed  CAS  Google Scholar 

  • Vanderlei R, Chaudhri M, Knight M, Meadows H, Chambers A, Taylor W, Kelly C, Simpson AJG (1989) Predicted structure of a major Schistosoma mansoni eggshell protein. Mol Biochem Parasitol 32:7–14

    Article  Google Scholar 

  • Walker ID, Bridgen J (1976) The keratin chains of avian scale tissues. Eur J Biochem 67:283–293

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Dunker AK (1981) Determination of the secondary structure of proteins from the amide I band of the laser-Raman spectrum. J Mol Biol 152:783–813

    Article  PubMed  CAS  Google Scholar 

  • Wourms JP (1976) Annual fish oogenesis. I. Differentiation of the mature oocyte and formation of the primary envelope. Dev Biol 50:338–354

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87:7120–7124

    Article  PubMed  CAS  Google Scholar 

  • Young EG, Inman WR (1938) The protein casing of salmon eggs. J Biol Chem 124:189–193

    CAS  Google Scholar 

  • Yu NT (1977) Raman spectroscopy: a conformational probe in biochemistry. CRC Crit Rev Biochem 4:229–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamodrakas, S.J. (1992). Molecular Architecture of Helicoidal Proteinaceous Eggshells. In: Case, S.T. (eds) Structure, Cellular Synthesis and Assembly of Biopolymers. Results and Problems in Cell Differentiation, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47207-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47207-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22440-3

  • Online ISBN: 978-3-540-47207-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics