Skip to main content

Effective Use of Geometric Properties for Clustering

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1763))

Abstract

This talk surveys howgeometric information can be effectively used for efficient algorithms with focus on clustering problems. Given a complete weighted graph G of n vertices,is there a partition of the vertex set into k disjoint subsets so that the maximum weight of an innercluster edge (whose two endpoints both belong to the same subset) is minimized. This problem is known to be NP-complete even for k=3. The case of k=2, that is, bipartition problem is solvable in polynomial time. On the other hand, in geometric setting where vertices are points in the plane and weights of edges equal the distances between corresponding points, the same problem is solvable in polynomial time even for k≥3 as far as k is a fixed constant. For the case k=2, effective use of geometric property of an optimal solution leads to considerable improvement on the computational complexity. Other related topics are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Bhattacharya, B., Keil, J.M., Yao, F.F.: Clustering Algorithms Based on Minimum and Maximum Spanning Trees. In: Proc. of the 4th Annual ACM Symp. on Computational Geometry, pp. 252–257 (1988)

    Google Scholar 

  2. Avis, D.: Diameter Partitioning. Discrete and Computational Geometry 1, 265–276 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brucker, P.: On the Complexity of Clustering Problems. In: Henn, R., Korte, B., Oletti, W. (eds.) Optimization and Operations Research. Lecture Notes in Economics and Mathematical Systems, pp. 45–54. Springer, Berlin (1978)

    Google Scholar 

  4. Capoyleas, V., Rote, G., Woeginger, G.: Geometric Clusterings. J. of Algorithms 12, 341–356 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dobkin, D., Suri, S.: Maintenance of Geometric Extrema. J. of ACM 38(2), 275–298 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edelsbrunner, H., Mauer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E., Wood, D.: Stabbing Line Segments. In: BIT, vol. 22, pp. 274–281 (1982)

    Google Scholar 

  7. Hagauer, J., Rote, G.: Three-Clustering of Points in the Plane. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 192–199. Springer, Heidelberg (1993)

    Google Scholar 

  8. Hansen, P., Jaumard, B.: Minimum sum of diameters clustering. J. of Classification, 215–226 (1987)

    Google Scholar 

  9. Hartigan, J.A.: Clustering Algorithms. John-Wiley, New York (1975)

    MATH  Google Scholar 

  10. Hershberger, J.: Minimizing the Sum of Diameters Efficiently. Computational Geometry: Theory and Applications 12, 111–118 (1992)

    MathSciNet  Google Scholar 

  11. Hershberger, J., Suri, S.: Finding Tailored Partitions. In: Proc. of the 5th Annual ACM Symp. on Computational Geometry, pp. 255–265 (1989)

    Google Scholar 

  12. Inaba, M., Katoh, N., Imai, H.: Applications of Weighted Voronoi Diagrams and Randomization to Variance-Based k-Clustering. In: Proc. 10th ACM Symp. on Computational Geometry, pp. 332–339 (1994)

    Google Scholar 

  13. Johnson, D.S.: The NP-Completeness Column: Ongoing Guide. J. of Algorithms 3, 182–195 (1982)

    Article  MATH  Google Scholar 

  14. Katoh, N., Ibaraki, T.: A Parametric Characterization and an ε-Approximation Scheme for the Minimization of a Quasiconcave Program. Discrete Applied Mathematics 17, 39–66 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Monma, C., Paterson, M., Suri, S., Yao, F.: Computing Euclidean Maximum Spanning Trees. In: Proc. of the 4th Annual ACM Symp. on Computational Geometry, pp. 241–251 (1988)

    Google Scholar 

  16. Monma, C., Suri, S.: Partitioning Points and Graphs to Minimize the Maximize or the Sum of Diameters. In: Proc. 6th International Conf. on Theory and Applications of Graphs (1988)

    Google Scholar 

  17. Overmars, M., van Leeuwen, J.: Maintenance of Configurations in the Plane. J. Coput. and Syst. Sci. 23, 166–204 (1981)

    Article  MATH  Google Scholar 

  18. Selim, S.Z., Ismail, M.A.: K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans. Pattern Anal. Mach. Intell., 81–87 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asano, T. (2000). Effective Use of Geometric Properties for Clustering. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 1998. Lecture Notes in Computer Science, vol 1763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46515-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46515-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67181-7

  • Online ISBN: 978-3-540-46515-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics