Skip to main content

Pneumoperitoneum and Its Effects on Malignancy

  • Chapter
  • First Online:
Minimally Invasive Surgical Oncology
  • 1155 Accesses

Abstract

This chapter reviews available evidence about the effects of pneumoperitoneum on the whole patient with a malignancy. Following this, the effects of pneumoperitoneum on malignant cells are reviewed, including both in vitro and in vivo studies. The effects of the composition and pressure of the gas used to establish pneumoperitoneum is then reviewed, followed by a review of laboratory and clinical studies focusing specifically on port-site recurrences. Finally, the literature regarding approaches to the prevention of port-site recurrences is reviewed. In the simplest historical terms, the clinical and basic science related to the effects of pneumoperitoneum on malignancy is a direct result of studies of the clinical and basic science of port-site recurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curet, M.J.: Port site metastases. Am. J. Surg. 187(6), 705–712 (2004)

    Article  PubMed  Google Scholar 

  2. Beebe, D.S., McNevin, M.P., Crain, J.M., et al.: Evidence of venous stasis after abdominal insufflation for laparoscopic cholecystectomy. Surg. Gynecol. Obstet. 176, 443–447 (1993)

    PubMed  CAS  Google Scholar 

  3. Jorgensen, J.O., Lalak, N.J., North, L., et al.: Venous stasis during laparoscopic cholecystectomy. Surg. Laparosc. Endosc. Percutan. Tech. 4, 128–133 (1994)

    CAS  Google Scholar 

  4. Ido, K., Suzuki, T., Kimura, K., et al.: Lower extremity venous stasis during laparoscopic cholecystectomy as assessed using color Doppler ultrasound. Surg. Endosc. 9, 310–313 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. Mayol, J., Vincent-Hamlin, E., Sarmiento, J.M., et al.: Pulmonary embolism following laparoscopic cholecystectomy: report of two cases and review of the literature. Surg. Endosc. 8, 214–217 (1994)

    Article  PubMed  CAS  Google Scholar 

  6. Guillou, P.J., Quirke, P., Thorpe, H., et al.: Short term endpoints of conventional versus laparoscopic assisted surgery in patients with colorectal cancer (MRC CLASSIC trial): muticentre randomized controlled trial. Lancet 365, 1718–1726 (2005)

    Article  PubMed  Google Scholar 

  7. COST study group: a comparison of laparoscopically assisted and open colectomy for coloncancer. NEJM 350, 2050–2059 (2004)

    Article  Google Scholar 

  8. COLOR Study Group: Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomized trial. Lancet Oncol. 6, 477–484 (2005)

    Article  Google Scholar 

  9. Jakub, J., Greene, F.L.: Pneumoperitoneum in cancer. In: Rosenthal, R., Friedman, R.L., Phillips, E.H. (eds.) The pathophysiology of pneumo-peritoneum. Springer, New York (1998)

    Google Scholar 

  10. Punnnonen, R., Viinamaki, O.: Vasopressin release during laparoscopy: role of increased intra-abdominal pressure. Lancet 1, 175–6 (1982)

    Article  Google Scholar 

  11. Caprini, J.A., Arcelus, J.I., Laubach, M., et al.: Postoperative hypercoagulability and deep venous thrombosis after laparoscopic cholecystectomy. Surg. Endosc. 9, 304–309 (1995)

    PubMed  CAS  Google Scholar 

  12. Hansborough, J.F., Bender, E.M., Zapata-Sirvent, R., et al.: Altered helper and suppressor lymphocyte populations in surgical patients: a measure of postoperative immunosuppression. Am. J. Surg. 148, 303 (1984)

    Article  Google Scholar 

  13. Vallina, V.L., Velasco, J.M.: The influence of laparoscopy on lymphocyte subpopulations in the surgical patient. Surg. Endosc. 10, 481 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. Christou, N.V., Meakins, J.L., Gordon, J., et al.: The delayed hypersensitivity response and host resistance in surgical patients 20 years later. Ann. Surg. 222, 534 (1995)

    PubMed  CAS  Google Scholar 

  15. Allendorf, J.D., Bessler, M., Whelan, R.L., et al.: Better preservation of immune function after laparoscopic assisted vs open bowel resection in a murine model. Dis. Colon Rectum 39, 67 (1996)

    Article  Google Scholar 

  16. Ng, C.S.H., Whelan, R.L., lacy, A.M., Yim, A.P.C.: Is minimal access surgery for cancer associated with immunologic benefits? World J. Surg. 29, 975–981 (2005)

    Article  PubMed  Google Scholar 

  17. Gupta, A., Watson, D.I.: Effect of laparoscopy on immune function. Br. J. Surg. 88(10), 1296–1306 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Schob, O.M., Allen, D.C., Benzel, E.: A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am. J. Surg. 172, 248 (1996)

    Article  PubMed  CAS  Google Scholar 

  19. Jackman, S.V., Weingart, J.D., Kinsman, S.L., et al.: Laparoscopic surgery in patients with ventriculoperitoneal shunts: safety and monitoring. J. Urol. 164, 1352 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Harris, S.N., Ballantyne, G.H., Luther, M.A., et al.: Alterations of cardiovascular performance during laparoscopic colectomy: a combined hemodynamic and echocardiographic analysis. Anesth. Analg. 83, 482 (1996)

    PubMed  CAS  Google Scholar 

  21. Giebler, R.M., Kabatnik, M., Stegan, B.H., et al.: Retroperitoneal and intraperitoneal CO2 insufflation have markedly different cardiovascular effects. J. Surg. Res. 68, 153 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Greif, W.M., Forse, A.: Cardiopulmonary effects of the laparoscopic pneumoperitoneum in a porcine model of ARDS. Am. J. Surg. 177, 216 (1999)

    Article  PubMed  CAS  Google Scholar 

  23. West, M.A., Hackam, D.J., Baker, J., et al.: Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide. Ann. Surg. 226, 179 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. Kopernik, G., Avinoach, E., Grossman, Y., et al.: The effect of a high partial pressure of carbon dioxide environment on metabolism and immune functions of human peritoneal cells – relevance to carbon dioxide pneumoperitoneum. Am. J. Obstet. Gynecol. 179, 1503 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. Wu, F., Sietses, C., Blomberg, B., et al.: Systemic and peritoneal inflammatory response after laparoscopic or conventional colon resection in cancer patients. Dis. Colon Rectum 46, 147 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Gutt, N.C., Kim, Z.G., Hollander, D., et al.: CO2 environment influences the growth of cultured human cancer cells dependent on insufflation pressure. Surg. Endosc. 15, 314 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. Basson, M.D., Yu, C.F., Herden-Kirchoff, O., et al.: Effects of increased ambient pressure on colon cancer cell adhesion. J. Cell. Biochem. 78, 47 (2000)

    Article  PubMed  CAS  Google Scholar 

  28. Volz, J., Koster, S., Spacek, Z., et al.: The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth. Cancer 86, 770 (1999)

    Article  PubMed  CAS  Google Scholar 

  29. Paraskeva, P.A., Ridgway, P.F., Jones, T., Smith, A., Peck, D.H., Darzi, A.W.: Laparoscopic environmental changes during surgery enhance the invasive potential of tumours. Tumour Biol. 26(2), 94–102 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Ziprin, P., Ridgway, P.F., Peck, D.H., Darzi, A.W.: Laparoscopic enhancement of tumour cell binding to the peritoneum is inhibited by anti-intercellular adhesion molecule-1 monoclonal antibody. Surg. Endosc. 17(11), 1812–1817 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. Hofstetter, W., Ortega, A., Chiang, M., Brown, B., Paik, P., Youn, P., Beart, R.W.: Abdominal insufflation does not cause hematogenous spread of colon cancer. J. Laparoendosc. Adv. Surg. Tech. A 10(1), 1–4 (2000)

    Article  PubMed  CAS  Google Scholar 

  32. Witich, P., Steyerber, E.W., Simons, S.H., et al.: Intraperitoneal tumor growth is influenced by pressure of carbon dioxide pneumoperitoneum. Surg. Endosc. 14, 817 (2000)

    Article  Google Scholar 

  33. Halpin, V.J., Underwood, R.A., Ye, D., Cooper, D.H., Wright, M., Hickerson, S.M., Connett, W.C., Connett, J.M., Fleshman, J.W.: Pneumoperitoneum does not influence trocar site implantation during tumor manipulation in a solid tumor model. Surg. Endosc. 19(12), 1636–1640 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. Ishida, H., Murata, N., Yamada, H., Nakada, H., Takeuchi, I., Shimomura, K., Fujioka, M., Idezuki, Y.: Pneumoperitoneum with carbon dioxide enhances liver metastases of cancer cells implanted into the portal vein in rabbits. Surg. Endosc. 14(3), 239–242 (2000)

    Article  PubMed  CAS  Google Scholar 

  35. Izumi, K., Ishikawa, K., Tojigamori, M., Matsui, Y., Shiraishi, N., Kitano, S.: Liver metastasis and ICAM-1 mRNA expression in the liver after carbon dioxide pneumoperitoneum in a murine model. Surg. Endosc. 19(8), 1049–1054 (2005). Epub 2005 May 12

    Article  PubMed  CAS  Google Scholar 

  36. Takeuchi, H., Inomata, M., Fujii, K., Ishibashi, S., Shiraishi, N., Kitano, S.: Increased peritoneal dissemination after laparotomy versus pneumoperitoneum in a mouse cecal cancer model. Surg. Endosc. 18(12), 1795–1799 (2004). Epub 2004 Oct 26

    Article  PubMed  CAS  Google Scholar 

  37. Hirabayashi, Y., Yamaguchi, K., Shiraishi, N., Adachi, Y., Saiki, I., Kitano, S.: Port-site metastasis after CO2 pneumoperitoneum: role of adhesion molecules and prevention with antiadhesion molecules. Surg. Endosc. 18(7), 1113–1117 (2004)

    Article  PubMed  CAS  Google Scholar 

  38. Carter, J.J., Feingold, D.L., Kirman, I., Oh, A., Wildbrett, P., Asi, Z., Fowler, R., Huang, E., Whelan, R.L.: Laparoscopic-assisted cecectomy is associated with decreased formation of postoperative pulmonary metastases compared with open cecectomy in a murine model. Surgery 134(3), 432–436 (2003)

    Article  PubMed  Google Scholar 

  39. Lecuru, F., Agostini, A., Camatte, S., et al.: Impact of pneumoperitoneum on tumor growth. Surg. Endosc. 16, 1170 (2002)

    Article  PubMed  CAS  Google Scholar 

  40. Tan, B.J.: Is carbon dioxide insufflation safe for laparoscopic surgery? A model to assess the effects of carbon dioxide on transitional-cell carcinoma growth, apoptosis, and necrosis. J. Endourol. 20(11), 965–969 (2006)

    Article  PubMed  Google Scholar 

  41. Schmeding, M., Schwalbach, P., Reinshagen, S., Autschbach, F., Benner, A., Kuntz, C.: Helium pneumoperitoneum reduces tumor recurrence after curative laparoscopic liver resection in rats in a tumor-bearing small animal model. Surg. Endosc. 17(6), 951–959 (2003)

    Article  PubMed  CAS  Google Scholar 

  42. Ishida, H., Hashimoto, D., Takeuchi, I., Yokoyama, M., Okita, T., Hoshino, T.: Liver metastases are less established after gasless laparoscopy than after carbon dioxide pneumoperitoneum and laparotomy in a mouse model. Surg. Endosc. 16(1), 193–196 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. Jingli, C., Rong, C., Rubai, X.: Influence of colorectal laparoscopic surgery on dissemination and seeding of tumor cells. Surg. Endosc. 20(11), 1759–1761 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. Cavina, E., Goletti, O., Molea, N., et al.: Trocar site tumor recurrences: may pneumoperitoneum be responsible? Surg. Endosc. 12, 1294 (1998)

    Article  PubMed  CAS  Google Scholar 

  45. Ikramuddin, S., Lucas, J., Ellison, C., et al.: Detection of aerosolized cells during carbon dioxide laparoscopy. J. Gastrointest. Surg. 2, 580 (1998)

    Article  PubMed  CAS  Google Scholar 

  46. Hewett, P.J., Texler, M.L., Anderson, D., et al.: In vivo real time analysis of intraperitoneal radiolabeled tumor cell movement during laparoscopy. Dis. Colon Rectum 42, 868 (1999)

    Article  PubMed  CAS  Google Scholar 

  47. Brundell, S.M., Tucker, K., Brown, B., et al.: Variables in the spread of tumor cells to trocars and port sites during operative laparoscopy. Surg. Endosc. 16, 1413 (2002)

    Article  PubMed  CAS  Google Scholar 

  48. Mathew, G., Watson, D.I., Rofe, A.M., et al.: Wound metastases following laparoscopic and open surgery for abdominal cancer. Br. J. Surg. 83, 1087 (1996)

    Article  PubMed  CAS  Google Scholar 

  49. Hirabayashi, Y., Yamaguchi, K., Shiraishi, N., et al.: Development of port site metastasis after pneumoperitoneum: a scanning electron microscopy study. Surg. Endosc. 16, 864 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. Wittich, Ph, Marquet, R.L., Kazemeier, G., Bonjer, H.J.: Port site metastases after CO2 laparoscopy: is aerosolization of tumor cells a pivotal factor? Surg. Endosc. 14, 189–192 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Burns, J.M., Matthews, B.D., Pollinger, H.S., Mostafa, G., Joels, C.S., Austin, C.E., Kercher, K.W., Norton, H.J., Heniford, B.T.: Effect of carbon dioxide pneumoperitoneum and wound closure technique on port site tumor implantation in a rat model. Surg. Endosc. 19(3), 441–447 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. Ishida, H., Murata, N., Yamada, H., et al.: Influence of trocar placement and CO2 pneumoperitoneum on port site metastasis following laparoscopic tumor surgery. Surg. Endosc. 14, 193–197 (2000)

    Article  PubMed  CAS  Google Scholar 

  53. Brundell, S., Tsopelas, C., Chatterton, B., et al.: Effect of port composition on tumor cell adherence. Dis. Colon Rectum 46, 637 (2003)

    Article  PubMed  Google Scholar 

  54. Berends, F.J., Kazemier, G., Bonjer, H.J., et al.: Subcutaneous metastases after laparoscopic colectomy. Lancet 344, 58 (1994)

    Article  PubMed  CAS  Google Scholar 

  55. Hughes, E.S., McDermontt, F.T., Poligless, A.L., et al.: Tumor recurrence in the abdominal wall scar tissue after large bowel cancer surgery. Dis. Colon Rectum 26, 571 (1983)

    Article  PubMed  CAS  Google Scholar 

  56. Reilly, W.T., Nelson, H., Schroeder, G., et al.: Wound recurrence following conventional treatment of colorectal cancer. A rare but perhaps underestimated problem. Dis. Colon Rectum 39, 200 (1996)

    Article  PubMed  CAS  Google Scholar 

  57. Vukasin, P., Ortega, A.E., Greene, F.L., et al.: Wound recurrence following laparoscopic colon cancer resection: results of the American society of colon and rectal surgeons laparoscopic registry. Dis. Colon Rectum 39, S20 (1996)

    Article  PubMed  CAS  Google Scholar 

  58. Zmora, O., Weiss, E.: Trocar site recurrence in laparoscopic surgery for colorectal cancer, myth or real concern? Surg. Oncol. Clin. N. Am. 10, 625 (2001)

    PubMed  CAS  Google Scholar 

  59. Lacy, A.M., Garcia-Valdecasas, J.C., Delgado, S., et al.: Laparoscopy assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359, 2224 (2002)

    Article  PubMed  Google Scholar 

  60. Shoup, M., Brennan, M.F., Karpeh, M.S., et al.: Port site metastasis after diagnostic laparoscopy for upper gastrointestinal tract malignancies: an uncommon entity. Ann. Surg. Oncol. 9, 632 (2002)

    Article  PubMed  Google Scholar 

  61. Paolucci, V., Schaeff, B., Schneider, M., et al.: Tumor seeding following laparoscopy: international survey. World J. Surg. 23, 989 (1999)

    Article  PubMed  CAS  Google Scholar 

  62. Cera, S.M., Wexner, S.D.: Minimally invasive treatment of colon cancer. Cancer J. 11, 26–35 (2005)

    Article  PubMed  Google Scholar 

  63. Tsivian, A., Sidi, A.A.: Port site metastases in urological laparoscopic surgery. J. Urol. 169, 1213–1218 (2003)

    Article  PubMed  Google Scholar 

  64. Wu, J.S., Guo, L.W., Ruiz, M.B., et al.: Excision of trocar sites reduces tumor implantation in an animal model. Dis. Colon Rectum 41, 1107 (1998)

    Article  PubMed  CAS  Google Scholar 

  65. Jacobi, C.A., Bonjer, H.J., Puttick, M.I., et al.: Oncologic implications of laparoscopic and open surgery. Surg. Endosc. 16, 441–445 (2002)

    Article  PubMed  CAS  Google Scholar 

  66. Tai, Y.S., Abente, F.C., Assalia, A., Ueda, K., Gagner, M.: Topical treatment with oxaliplatin for the prevention of port-site metastases in laparoscopic surgery for colorectal cancer. JSLS 10(2), 160–165 (2006)

    PubMed  Google Scholar 

  67. Wenger, F.A., Kilian, M., Braumann, C., et al.: Effects of taurolidine and octreotide on port site and liver metastases after laparoscopy in an animal model of pancreatic cancer. Clin. Exp. Metastasis 19, 169–173 (2002)

    Article  PubMed  CAS  Google Scholar 

  68. Balli, J.E., Franklin, M.E., Almeida, J.A., et al.: How to prevent port-site metastases in laparoscopic colorectal surgery. Surg. Endosc. 14, 1034–1036 (2000)

    Article  PubMed  CAS  Google Scholar 

  69. Wexner, S., Cohen, C.: Laparoscopic colectomy for malignancy: advantages and limitations. In: Wexner, S.D. (ed.) The future of laparoscopy in oncology. Surg. Oncol. Clin. N. Am. 3, 637–643 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Lefor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lefor, A.T., Shimizu, A. (2011). Pneumoperitoneum and Its Effects on Malignancy. In: Matteotti, R., Ashley, S. (eds) Minimally Invasive Surgical Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45021-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45021-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45018-4

  • Online ISBN: 978-3-540-45021-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics