Skip to main content

9 Quantum Operations on Qubitsand Their Characterization

  • Part I Quantum Estimation
  • Chapter
  • First Online:
Quantum State Estimation

Part of the book series: Lecture Notes in Physics ((LNP,volume 649))

  • 615 Accesses

Abstract

Information encoded in quantum system has to obey rules of quantum physics which impose strict bounds on state estimation and on possible manipulations with quantum information. That is, an unknown state of a qubit cannot be precisely determined from a measurement performed on a finite ensemble of identically prepared qubits. As a consequence the perfect, universal cloning map is not allowed. Another map which cannot be performed perfectly on an unknown state of a qubit is the “spin-flip” i.e. the universal-NOT gate. Within this significant framework the contextual experimental realization of the optimal 1 to 2 universal cloning and the optimal universal-NOT (U-NOT) gate by quantum injected optical parametric amplification (QIOPA) through a modified quantum state teleportation protocol is reported. In addition, the realization of a multi-photon “all optical” Schroedinger cat state is investigated by exploiting the information preserving property of the parametric amplification. Finally, as a significant demonstration of the perspectives offered by quantum entanglement to modern measurement theory, we shall present how the total parallelism of a bipartite entangled state can be adopted to extract efficiently the full information that characterizes any unknown “quantum operations”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. K. Kraus: States, Effects and Operations (Springer-Verlag, Berlin, 1983); J. Preskill: Lecture Notes on Quantum Computation, http://www.theory.caltech.edu/people/ph229/#lecture. A completely-positive map (CP-map) Λ(ρ ) preserves positivity for: (a) any local state in the Hilbert space H, (b) when tensor-multiplied with the identical map I acting on any Hilbert space K, the extended map Λ (ρ ) otimes I is positive for any state in the entangled space H otimes K, for any extension of K. A positive map (P-map) only satisfies property (a).

    Google Scholar 

  • 2. A. S. Holevo: Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

    Google Scholar 

  • 3. S. Massar and S. Popescu: Phys. Rev. Lett. 74, 1259 (1995); N. Gisin and S. Popescu: Phys. Rev. Lett. 83, 432 (1999); R.G. Sachs: The Physics of Time Reversal (U. of Chicago Press, 1987).

    Article  Google Scholar 

  • 4. R. Derka, V. Buzek and A. Ekert: Phys. Rev. Lett. 80, 1571 (1998); V. Buzek, M. Hillery, R.F. Werner: Phys. Rev. A 60, R2626 (1999); R.F. Werner: Phys. Rev. A 58, 1827 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  • 5. W.K. Wootters and W.K. Zurek: Nature (London) 299, 802 (1982).

    Google Scholar 

  • 6. N. Herbert: Founds. Phys. 12, 1171 (1982). The first precise formulation of the no-cloning theorem based on the linear structure of quantum theory was indeed expressed in 1981 by G. Ghirardi in a Referee Report for Foundations of Physics to the paper by N. Herbert (G. Ghirardi: private communication).

    Google Scholar 

  • 7. N. Gisin: Phys. Lett. A 242, 1 (1998); D. Bruss, G.M. D’Ariano, C. Macchiavello, and M.F. Sacchi: Phys. Rev. A 62, 062302 (2000).

    Article  Google Scholar 

  • 8. C. Simon, V. Buzek, and N. Gisin: Phys. Rev. Lett. 87, 170405 (2001).

    Article  Google Scholar 

  • 9. F. De Martini, V. Buzek, F. Sciarrino, and C. Sias: Nature (London) 419, 815 (2002).

    Google Scholar 

  • 10. A. Peres: Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993).

    Google Scholar 

  • 11. A. Alber et al: Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  • 12. F. De Martini: Phys. Rev. Lett. 81, 2842 (1998); F. De Martini, V. Mussi, and F. Bovino: Opt. Comm. 179, 581 (2000).

    Article  Google Scholar 

  • 13. C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters: Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  • 14. A. Perelomov: Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  • 15. M.J. Collett: Phys. Rev. A 38, 2233 (1988).

    Article  Google Scholar 

  • 16. F. De Martini, G. Di Giuseppe and S. Padua: Phys. Rev. Lett. 87, 150401 (2001).

    Article  Google Scholar 

  • 17. C. Simon, G. Weihs and A. Zeilinger: Phys. Rev. Lett. 84, 2993 (2000).

    Article  Google Scholar 

  • 18. F.A. Bovino, F. De Martini and V. Mussi: arXiv:quant-ph/9905048 (1999).

    Google Scholar 

  • 19. D.F. Walls and G.I. Milburn: Quantum Optics (Springer Verlag, Berlin, 1994).

    Google Scholar 

  • 20. E. Schrödinger: Naturwissenshaften 23, 807 (1935).

    Google Scholar 

  • 21. A. Caldeira, A. Leggett: Physica A 121, 587 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  • 22. A. Leggett, A. Garg: Phys. Rev. Lett. 54, 857 (1985).

    Article  MathSciNet  Google Scholar 

  • 23. W. Zurek: Physics Today, October 1991, p 36.

    Google Scholar 

  • 24. C. Monroe, D. Meekhof, B. King, D.Wineland: Science 272, 1131 (1996).

    MathSciNet  Google Scholar 

  • 25. M. Brune, E. Hagley, J. Dreyer, X. Maistre, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche: Phys. Rev. Lett. 77, 4887 (1996); L. Davidovich, M. Brune, J.M. Raimond and S. Haroche: Phys. Rev. A 53, 1295 (1996); J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens: Nature (London) 406, 43 (2000); M. Grenier, O. Mandel, T. Hänsch, I. Bloch: Nature (London) 419, 51 (2002).

    Article  Google Scholar 

  • 26. M.W. Noel, C.R. Stroud: Phys. Rev. Lett. 77, 1913 (1996).

    Article  Google Scholar 

  • 27. D. Pelliccia, V. Schettini, F. Sciarrino, C. Sias and F. De Martini: Phys. Rev. A 68, 042306 (2003); F. De Martini, D. Pelliccia, and F. Sciarrino: Phys. Rev. Lett. 92, 067901 (2004).

    Article  Google Scholar 

  • 28. C.H. Bennett, D.P. Di Vincenzo, J.A. Smolin, and W.K. Wootters: Phys. Rev. A 54, 3824 (1996).

    Article  MathSciNet  Google Scholar 

  • 29. P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum and P.H. Eberhard: Phys. Rev. A 60, R773 (1999)

    Google Scholar 

  • 30. M. Horodecki, P. Horodecki and R. Horodecki. In: Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001).

    Google Scholar 

  • 31. M.D. Reid, W.L. Munro, and F. De Martini: Phys. Rev. A 66, 033801 (2002).

    Article  Google Scholar 

  • 32. M. Redhead: Incompleteness, Nonlocality and Realism (Clarendon Press, Oxford, 1987).

    Google Scholar 

  • 33. A. Lamas-Linares, C. Simon, J. C. Howell and D. Bouwmeester: Science 296, 712 (2002) first reported a N=1,M=2 cloning experiment with a semi-classical strongly attenuated coherent injection state reaching a UOQCM fidelity F≈ 0.81.

    Article  Google Scholar 

  • 34. V. Buzek: private communication to FDM; V. Buzek and M. Hillery: Phys. Rev. A 62, 022303 (2000); M. Hillery, V. Buzek, and M. Ziman: Phys. Rev. A 65, 022301 (2002).

    Google Scholar 

  • 35. F. De Martini: Phys. Lett. A 250, 15 (1998). The collinear QIOPA is found to be an efficient generator of multiphoton Schrödinger Cat π-states. The no-interaction term in (9.23) is easily discarded by a simple 2-detector coincidence measurement on the mode k.

    Article  Google Scholar 

  • 36. M. Ricci, F. Sciarrino, C. Sias, and F. De Martini: Phys. Rev. Lett. 92, 047901 (2004); F. Sciarrino, C. Sias, M. Ricci and F. De Martini: Phys. Lett. A 323, 34 (2004).

    Article  Google Scholar 

  • 37. C.H. Bennett, and D. Di Vincenzo: Nature (London) 404, 247 (2000).

    Article  Google Scholar 

  • 38. D. Gottesman, and I.L. Chuang: Nature (London) 402, 390 (1999).

    Google Scholar 

  • 39. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu: arXiv:quant-ph/9710013 (1997); Phys. Rev. Lett. 80, 1121 (1998); D. Bouwmeester et al: Nature (London) 390, 575 (1997); E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini: Phys. Rev. Lett. 88, 070402 (2002).

    Google Scholar 

  • 40. S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini: Phys. Rev. A 66, 030302(R) (2002).

    Article  Google Scholar 

  • 41. C.K. Hong, Z.Y. Ou and L. Mandel: Phys. Rev. Lett. 59, 2044 (1987).

    Article  Google Scholar 

  • 42. I.L. Chuang, M.A. Nielsen: Quantum Information and Quantum Computation (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  • 43. G.M. D’Ariano. In: Experimental Quantum Computation and Information, Proceedings of the Intl.School “E. Fermi,” Varenna, ed by F. De Martini and C. Monroe (Editrice Compositori, Bologna, 2001).

    Google Scholar 

  • 44. G.M. D’Ariano and P. Lo Presti: Phys. Rev. Lett. 86, 4195 (2001).

    Article  Google Scholar 

  • 45. G.M. D’Ariano and H.P. Yuen: Phys. Rev. Lett. 76, 2832 (1996).

    Article  Google Scholar 

  • 46. F. De Martini, A. Mazzei, M. Ricci, and G.M. D’Ariano: Phys. Rev. A 67, 062307 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matteo Paris Jaroslav Řeháček

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

De Martini, F., Ricci, M., Sciarrino, F. 9 Quantum Operations on Qubitsand Their Characterization. In: Paris, M., Řeháček, J. (eds) Quantum State Estimation. Lecture Notes in Physics, vol 649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44481-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44481-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22329-0

  • Online ISBN: 978-3-540-44481-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics