Skip to main content
  • 1278 Accesses

Abstract

It is often the case that the instances of an entity type must also necessarily be an instance of another entity type. This can be understood as a special relationship, an IsA relationship, between entity types (and, in general, between concepts). IsA relationships are constraints. Entity types and their IsA relationships form a network structure called a taxonomy. Taxonomies are a very important part of conceptual schemas, and the objective of this chapter is to study them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.7 Bibliographical Notes

  • Abiteboul S, Hull R (1987) IFO: A formal semantic database model. ACM Trans. Database Syst. 12(4):525–565.

    Article  Google Scholar 

  • Analyti A, Spyratos N, Constantopoulos P (1997) Property covering: A powerful construct for schema derivations. ER 1997, LNCS 1331:271–284.

    Google Scholar 

  • Assenova P, Johannesson P (1996) Improving quality in conceptual modelling by the use of schema transformations. ER 1997, LNCS 1157:277–291.

    Google Scholar 

  • Batini C, Ceri S, Navathe SB (1992) Conceptual database design: An entity-relationship approach. Benjamin/Cummings.

    Google Scholar 

  • Borgida A (1995) Description logics in data management. IEEE Trans. Software Eng. 7(5):671–682.

    Google Scholar 

  • Borgida A, Mylopoulos J, Wong HKT (1984) Generalization/specialization as a basis for software specification. In: Brodie et al. (eds) pp 87–117.

    Google Scholar 

  • Brachman RJ (1983) What IS-A is and isn’t: An analysis of taxonomics links in semantic networks. IEEE Computer 16(10):30–36.

    Google Scholar 

  • Brachman RJ, Schmolze JG (1985) An overview of the KL-ONE knowledge representation system. Cognitive Sci. 9(2):171–216.

    Article  Google Scholar 

  • Calvanese D, Lenzerini M (1994) On the interaction between ISA and cardinality constraints. ICDE 1994:204–213.

    Google Scholar 

  • Ceri S, Fraternali P (1997) Designing database applications with objects and rules: The IDEA methodology. Addison-Wesley.

    Google Scholar 

  • Champeaux D de, Lea D, Faure P (1993) Object-oriented system development. Addison-Wesley.

    Google Scholar 

  • Cook S, Daniels J (1994) Designing object systems: Object-oriented modelling with Syntropy. Prentice Hall.

    Google Scholar 

  • Costal D, Gómez C (2006) On the use of association redefinition in UML class diagrams. ER 2006, LNCS 4215:513–527.

    Google Scholar 

  • Costal D, Olivé A, Teniente E (2001) Relationship type refinement in conceptual models with multiple classification. ER 2001, LNCS 2224:397–411.

    Google Scholar 

  • Halpin T (2001) Information modeling and relational databases: From conceptual analysis to logical design. Morgan Kaufmann.

    Google Scholar 

  • Halpin TA, Proper HA (1995a) Subtyping and polymorphism in object-role modelling. Data Knowl. Eng. 15:251–281.

    Article  MATH  Google Scholar 

  • Lenzerini M, Nardo D, Simi M (1991) Inheritance hierarchies in knowledge representation and programming languages. Wiley.

    Google Scholar 

  • Martin J, Odell J (1995) Object-oriented methods: A foundation. Prentice Hall.

    Google Scholar 

  • Meyer B (1997) Object-oriented software construction. Prentice Hall.

    Google Scholar 

  • Mylopoulos J, Bernstein PA, Wong HKT (1980) A language facility for designing database-intensive applications. ACM Trans. Database Syst. 5(2):185–207.

    Article  Google Scholar 

  • Nijssen GM, Halpin TA (1989) Conceptual schema and relational database design. Prentice Hall.

    Google Scholar 

  • Norrie MC, Steiner A, Würgler A, Wunderli M (1996) A model for classification structures with evolution control. ER1996, LNCS 1157:456–471.

    Google Scholar 

  • Olivé A (2000b) Time and change in conceptual modeling of information systems. In: Brinkkemper S, Lindencrona E, Sølvberg A (eds) Information systems engineering. State of the art and research themes. Springer, pp 289–304.

    Google Scholar 

  • Olivé A, Teniente E (2002) Derived types and taxonomic constraints in conceptual modeling. Inf. Syst. 27:391–409.

    Article  MATH  Google Scholar 

  • Olivé A, Costal D, Sancho M-R (1999) Entity evolution in IsA hierarchies. ER 1999, LNCS 1728:62–80.

    Google Scholar 

  • Poulovassilis A, McBrien P (1998) A general formal framework for schema transformation. Data Knowl. Eng. 28(1):47–71.

    Article  MATH  Google Scholar 

  • Quillian R (1968) Semantic memory. In: Minsky M (ed) Semantic information processing. MIT Press, pp 227–270.

    Google Scholar 

  • Smith JM, Smith DCP (1977) Database abstractions: Aggregation and generalization. ACM Trans. Database Syst. 2(2):105–133.

    Article  Google Scholar 

  • Sowa JF (ed) (1991) Principles of semantic networks: Explorations in the representation of knowledge. Morgan Kaufmann.

    Google Scholar 

  • Theodoulidis C, Wangler B, Loucopoulos P (1992) The Entity-Relationship-Time model. In: Loucoupulos P, Zicari R (eds) Conceptual Modeling, Databases and CASE: An integrated view of information systems development. Wiley, pp 87–115.

    Google Scholar 

  • Wieringa R, Jonge W de, Spruit P (1995) Using dynamic classes and role classes to model object migration. TAPOS 1(1):61–83.

    Google Scholar 

  • Wieringa R, Weigand H, Meyer J-J, Dignum (1991) The inheritance of dynamic and deontic integrity constraints. Ann. Math. Artif. Intell. 3(2–4):393–428.

    Article  MATH  Google Scholar 

  • Woods WA (1991) Understanding subsumption and taxonomy. A framework for progress. In: Sowa (ed) pp 45–94.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Taxonomies. In: Conceptual Modeling of Information Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39390-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39390-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39389-4

  • Online ISBN: 978-3-540-39390-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics