Skip to main content

Electron Optics of a Scanning Electron Microscope

  • Chapter
Scanning Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 45))

Abstract

Electrons emitted from thermionic, Schottky or field-emission cathodes are accelerated by a voltage of 0.1–50 keV between cathode and anode. The purpose of the electron optics of a SEM is to produce a small electron probe at the specimen by demagnifying the smallest virtual cross-section of the electron beam near the cathode. For the practical operation of a SEM, it must be possible to vary the electron-probe size, aperture and current; these cannot, however, be varied independently because they are related via the gun brightness. A geometric optical theory of electron-probe formation can be employed when using a thermionic cathode but for a field-emission gun a wave-optical theory is necessary. Electron-beam deflection by transverse electrostatic and magnetic fields is incorporated for scanning the electron probe across the specimen, for tilting the direction of the incident electron beam for stereoviewing and for recording electron channelling patterns. Deflection systems are further used for blanking and chopping the electron beam up to gigahertz frequencies for stroboscopic modes and for generating time-resolved signals. Owing to the large depth of focus, focusing of SEM images raises no problems but the resolution is limited by the electron-probe size, which decreases with decreasing spherical (C s) and chromatic (C c) aberration coefficients of the final probe-forming lens. Though a large working distance between specimen and lower polepiece has the advantage that free space is available for the SE and BSE detectors, a stronger lens excitation and an in-lens position of the specimen decreases the aberration coefficients by one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Haine, P.A. Einstein: Characteristics of the hot cathode electron microscope gun. Brit. J. Appl. Phys. 3, 40 (1952)

    ADS  Google Scholar 

  2. J.A. Swift, A.C. Brown: SEM electron source: pointed tungsten filaments with long-life and high brightness. Scanning 2, 42 (1979)

    Google Scholar 

  3. A.N. Broers: Some experimental and estimated characteristics of the LaB6 rod cathode electron gun. J. Phys. E 2, 273 (1969)

    ADS  Google Scholar 

  4. S.F. Vogel: Pyrolithic graphite in the design of a compact inert heater of a LaB6 cathode. Rev. Sci. Instr. 41, 585 (1970)

    ADS  Google Scholar 

  5. R. Vogt: Richtstrahlwert und Energieverteilung der Elektronen aus einem Elektronenstrahlerzeuger mit LaB6-Kathode. Optik 36, 262 (1972)

    Google Scholar 

  6. S.D. Ferris, D.C. Joy, H.J. Leamy, C.K. Crawford: A directly heated LaB6 electron source. SEM 1975 ( ITTRI, Chicago 1975 ) p. 11

    Google Scholar 

  7. S. Nakagawa, T. Yanaka: A highly stable electron probe obtained with LaB6 cathode electron gun. SEM 1975 ( ITTRI, Chicago 1975 ) p. 19

    Google Scholar 

  8. C.K. Crawford: Mounting methods and operating characteristics for LaB6 cathodes. SEM 1979/I ( SEM Inc., AMF O’Hare, IL 1979 ) p. 19

    Google Scholar 

  9. M. Gesley, F. Hohn: Emission distribution, brightness, and mechanical stability of the LaB6 triode electron gun. J. Appl. Phys. 64, 3380 (1988)

    ADS  Google Scholar 

  10. P.H. Schmidt, D.C. Joy, L.D. Longinotti, H.J. Leamy, S.D. Ferris, Z. Fisk: Anisotropy of thermionic electron emission values for LaB6 single-crystal emitter cathodes. Appl. Phys. Lett. 29, 400 (1976)

    ADS  Google Scholar 

  11. J.D. Verhoeven: On the problem of obtaining optimum brightness from your LaB6 gun. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 581

    Google Scholar 

  12. P.B. Sewell: High brightness thermionic electron guns for electron microscopes. SEM 1980/I ( SEM Inc., AMF O’Hare, IL 1980 ) p. 11

    Google Scholar 

  13. H. Hagiwara, H. Hiraoka, T. Terasaki, M. Ishii, R. Shimizu: Crystallographic and geometrical effects on thermionic emission change of single crystal LaB6 cathodes. SEM 1982/II ( SEM Inc., AMF O’Hare, IL 1982 ) p. 473

    Google Scholar 

  14. H. Boersch: Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Physik 139, 115 (1954)

    ADS  Google Scholar 

  15. K.H. Loeffler: Energy-spread generation in electron-optical instruments. Z. angew. Phys. 27, 145 (1969)

    Google Scholar 

  16. H. Rose, R. Spehr: On the theory of the Boersch effect. Optik 57, 339 (1980)

    Google Scholar 

  17. D.B. Langmuir: Theoretical limitations of cathode ray tubes. Proc. IRE 25, 977 (1937)

    Google Scholar 

  18. J. Dosse: Theoretische und experimentelle Untersuchungen über Elektronenstrahler. Z. Physik 115, 530 (1940)

    ADS  Google Scholar 

  19. D.W. Tuggle, J.Z. Li, L.W. Swanson: Point cathodes for use in virtua source electron optics. J. Microsc. 140, 293 (1985)

    Google Scholar 

  20. D.W. Tuggle, L.W. Swanson: Emission characteristics of the ZrO/W thermal field electron source. J. Vac. Sci. Techn. B 3, 220 (1985)

    Google Scholar 

  21. S. Saito, Y. Nakaizumi, H. Mori, T. Nagatani: A field emission SEM controlled by microprocessor. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1982 ) p. 379

    Google Scholar 

  22. M. Ohi, K. Harasawa, T. Niikura, H. Okazaki, Y. Ishimori, T. Miyokawa, S. Nakagawa: Development of a new digital FE SEM. In Electron Microscopy 1990, Vol. 1, ed. by L.D. Peachey, D.B. Williams ( San Francisco Press, San Francisco 1990 ) p. 432

    Google Scholar 

  23. A.N. Broers: Electron sources for SEM. SEM 1975 ( ITTRI, Chicago 1975 ) p. 661

    Google Scholar 

  24. L. Reimer, B. Volbert, P. Bracker: STEM semiconductor detector for testing SEM quality parameters. Scanning 2, 96 (1979)

    Google Scholar 

  25. P.B. Sewell, K.N. Ramachandran: A source imaging detector for the SEM. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 17

    Google Scholar 

  26. O.C. Wells: Experimental method for measuring the electron optical parameters of the SEM. SEM 1977/I (IT’TRL Chicago 1977 ) p. 25

    Google Scholar 

  27. W. Glaser: Grundlagen der Elektronenoptik ( Springer, Wien 1952 )

    MATH  Google Scholar 

  28. V.E. Cosslett: Probe size and probe current in the STEM. Optik 36, 85 (1972)

    Google Scholar 

  29. W. Glaser: Strenge Berechnung magnetischer Linsen der Feldform H Ho/[1 + (z/a)2]. Z. Physik 117, 285 (1941)

    MathSciNet  MATH  ADS  Google Scholar 

  30. R.L. Barnes, I.K. Openshaw: A comparison of experimental and theoretical CS values for some probe-forming lenses. J. Phys. E 1, 628 (1968)

    ADS  Google Scholar 

  31. S. Nakagawa: A method for measuring the spherical and chromatic aberration coefficients of an objective lens. SEM 1977/I ( ITTRI, Chicago 1977 ) p. 33

    Google Scholar 

  32. O. Scherzer: Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114 (1947)

    Google Scholar 

  33. H. Rose: Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate. Optik 33, 1 (1971)

    Google Scholar 

  34. H. Rose: Inhomogeneous Wien filter as a corrector compensating for the chromatic and spherical aberration of low-voltage electron microscopes. Optik 84, 91 (1990)

    Google Scholar 

  35. J. Zach: Design of a high-resolution low-voltage SEM. Optik 83, 30 (1989)

    Google Scholar 

  36. J. Zach, M. Haider: Correction of spherical and chromatic aberrations in a LVSEM. In Electron Microscopy 1994, Vol. 1 ( Les Editions de Physique, Les Ulis 1994 ) p. 199

    Google Scholar 

  37. J. Pawley, J. Wall: A low voltage SEM optimized for high-resolution topographical imaging. In Electron Microscopy 1982, Vol. 1 ( Deutsche Ges. für Elektronenmikroskopie, Frankfurt 1992 ) p. 383

    Google Scholar 

  38. T. Nagatani, S. Saito, M. Sato, M. Yamada: Development of an ultrahigh resolution SEM by means of a field emission source and in-lens system. Scanning Microscopy 1, 901 (1987)

    Google Scholar 

  39. T. Nagatani, M. Sato, M. Osumi: Development of an ultra-high-resolution low voltage SEM with an optimized in-lens design. In Electron Microscopy 1990, Vol.1, ed. by L.D. Peachey, D.B. Williams ( San Francisco Press, San Francisco 1990 ), p. 388

    Google Scholar 

  40. H. Nakagawa, N. Nomura, T. Koizumi, N. Anazawa, K. Harafuji: A novel high-resolution SEM for the surface analysis of high-aspect-ratio three-dimensional structures. Jpn. J. Appl. Phys. 30, 2112 (1991)

    ADS  Google Scholar 

  41. O.C. Wells, F.K. LeGoues, R.T. Hodgson: In-lens low-loss electron detector for the upper specimen stage in the SEM. In Electron Microscopy 1990, Vol.1, ed. by L.D. Peachey, D.B. Williams ( San Francisco Press, San Francisco 1990 ) p. 382

    Google Scholar 

  42. Z. Shao: Extraction of secondary electrons in a newly proposed immersion lens. Rev. Sci. Instr. 60, 693 (1989)

    ADS  Google Scholar 

  43. K. Ogura, Y. Ono, H. Kazumori, S. Nakagawa, J. Critchell: Advantages of low voltage imaging with the JSM-6320F semi-in-lens FESEM. In Electron Microscopy 1994, Vol.1 ( Les Editions de Physique, Les Ulis 1994 ) p. 63

    Google Scholar 

  44. T. Miyokawa, H. Kazumori, S. Nakagawa, R.C. Hertsens: Strong magnetic field lens with built-in secondary electron detector. In Electron Microscopy 1994, Vol.1 ( Les Editions de Physique, Les Ulis 1994 ) p. 255

    Google Scholar 

  45. T. Mulvey: Unconventional lens design. in Magnetic Electron Lenses, ed. by P.W. Hawkes, Topics Current Phys., Vol. 18 ( Springer, Berlin, Heidelberg 1982 ) p. 359

    Google Scholar 

  46. A. Yonezawa, Y. Takeuchi„ T. Kano, H. Ishijima: Single-pole objective lens for low-voltage SEM high resolution wafer observation. In Electron Microscopy 1990, Vol.1, ed. by L.D. Peachey, D.B. Williams ( San Francisco Press, San Francisco 1990 ) p. 396

    Google Scholar 

  47. M. Bode, L. Reimer: Detector strategy for a single-polepiece lens. Scanning 7, 125 (1985)

    Google Scholar 

  48. V. Kolarik, I. Müllerovâ, M. Lenc: SEM with single-polepice lens. Scanning Microscopy 3, 1003 (1989)

    Google Scholar 

  49. I. Müllerovâ, M. Lenc: The scanning very low-energy electron microscope. Mikrochim. Acta 12 (Suppl.), 173 (1992)

    Google Scholar 

  50. Y.W. Yau, R.F.W. Pease, A.A. Iranmanesh, K.J. Polasko: Generation and applications of finely focused beams of low-energy electrons. J. Vac. Sci. Techn. 19, 1048 (1981)

    ADS  Google Scholar 

  51. C. Kinalidis, J.C. Wolfe: Characterization of a low voltage, high current density electron probe. J. Vac. Sci. Techn. B 5, 150 (1987)

    Google Scholar 

  52. I. Müllerovâ, M. Lenc: Some approaches to low-voltage SEM. Ultramicroscopy 41, 399 (1992)

    Google Scholar 

  53. J. Frosien, E. Plies, K. Anger: Compound magnetic and electrostatic lenses for low-voltage applications. J. Vac. Sci. Techn. B 7, 1874 (1989)

    Google Scholar 

  54. E. Weimer, J.P. Martin: Development of a new ultra-high performance SEM. In Electron Microscopy 1994, Vol.1 ( Les Editions de Physique, Les Ulis 1994 ) p. 67

    Google Scholar 

  55. J. Frosien, S. Lanio, H.P. Feuerbaum: High precision electron optical system for absolute and CD-measurements on large substrates. Nucl. Instr. Meth. Phys. Res. A 363, 25 (1995)

    ADS  Google Scholar 

  56. M. Lenc, I. Müllerovâ: Electron optical properties of a cathode lens. Ultramicroscopy 41, 411 (1992)

    Google Scholar 

  57. I. Müllerovâ, L. Frank: Very low energy microscopy in commercial SEMs. Scanning 15, 193 (1993)

    Google Scholar 

  58. E. Bauer: Low energy electron microscopy. In Chemistry and Physics of Solid Surfaces VIII, ed. by R. Vanselov, R. Howe, Springer Ser. Surf. Sci., Vol. 22 ( Springer, Berlin, Heidelberg 1990 ) p. 267

    Google Scholar 

  59. L.H. Veneklasen: The continuing development of low-energy electron microscopy for characterizing surfaces. Rev. Sci. Instr. 63, 5513 (1992)

    ADS  Google Scholar 

  60. M. Fukuoka, Y. Sakai, K. Tsunoda, T. Ichinokawa: A microscanning electron microscope in ultrahigh vacuum for surface microanalysis. Rev. Sci. Instr. 65, 2844 (1994)

    ADS  Google Scholar 

  61. T.H.P. Chang, D.P. Kern, L.P. Muray: Microminiaturization of electronoptical systems. J. Vac. Sci. Techn. B 8, 1698 (1990)

    Google Scholar 

  62. A.D. Feinerman, D.A. Crewe, D.C. Perng, S.E. Shoaf: Sub-centimeter micromachined electron microscope. J. Vac. Sci. Techn. A 10, 611 (1992)

    ADS  Google Scholar 

  63. L.P. Muray, U. Staufer, D.P. Kern, T.H.P. Chang: Performance measurements of a 1-keV electron-beam microcolumn. J. Vac. Sci. Techn. B 10, 2749 (1992)

    Google Scholar 

  64. D.P. Kern, T.H.P. Chang: Miniaturized electron optics: Basis and applications. In Electron Microscopy 1994, Vol. 1 ( Les Editions de Physique, Les Ulis 1994 ) p. 149

    Google Scholar 

  65. C.W. Oatley, W.C. Nixon, R.F.W. Pease: Scanning Electron Microscopy Adv. Electr. Electron Phys. 21, 181 (1965)

    Google Scholar 

  66. J. Ximen, Z. Shao, P.S.D. Lin: Theoretical calculation of probe size of low-voltage SEM. J. Microsc. 170, 119 (1993)

    Google Scholar 

  67. P. Gentsch, P. Hagemann, L. Reimer: Comparison of the resolution using a 100 keV electron microscope in the conventional mode and with a scanning device. In Electron Microscopy 1974, Vol.1, ed. by J. V. Sanders and D.J. Goodchild (Austral. Acad. Sci., Canberra 1974 ) p. 256

    Google Scholar 

  68. J.R.A. Cleaver, K.C.A. Smith: Two-lens probe forming system employing field emission guns. SEM 1973 ( ITTRI, Chicago 1973 ) p. 49

    Google Scholar 

  69. A.V. Crewe: Optimization of small electron probes. Ultramicroscopy 23, 159 (1987)

    Google Scholar 

  70. C. Colliex, C. Mory: Quantitative aspects of STEM. In Quantitative Electron Microscopy, ed. by J.N. Chapman and A.J. Craven ( Scottish Univ. Summer School in Physics, Edinburgh 1984 ) p. 149

    Google Scholar 

  71. J.E. Barth, P. Kruit: Addition of different contributions to the charged particle probe size. Optik 101, 101 (1996)

    Google Scholar 

  72. O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949)

    MATH  ADS  Google Scholar 

  73. H. Hantsche: Entwicklung einer verbesserten Sondenstromstabilisierung für Rasterelektronenmikroskope. Scanning 2, 20 (1979)

    Google Scholar 

  74. S.J.B. Reed: Probe current stability in electron-probe microanalysis. J. Phys. E 1, 136 (1968)

    ADS  Google Scholar 

  75. H.F. Wellenstein, R.E. Ensman: A regulated filament temperature power supply for electron guns. Rev. Sci. Instr. 44, 922 (1973)

    ADS  Google Scholar 

  76. J. Arndt, H. Hantsche, D. Schmidt: A simple beam current stabilizing unit for SEMs. Scanning 1, 125 (1978)

    Google Scholar 

  77. L.J. Balk, K. Elbern, E. Kubalek: Elektronische Zusätze zum Rasterelektronenmikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 8, 313 (1975)

    Google Scholar 

  78. J.R.A. Cleaver, K.C.A. Smith: Optical characteristics of a field emission scanning microscope. In Scanning Electron Microscopy: systems and applications (Inst. of Physics, London 1973 ) p. 6

    Google Scholar 

  79. M.T. Postek, W.J. Keery, A.E. Vladar: Modification of a commercial SEM with a computer controlled stabilized power supply. Scanning 15, 208 (1993)

    Google Scholar 

  80. G.F. Bahr, E. Zeitler: The determination of magnification in the electron microscope. Lab. Invest. 14, 880 (1965)

    Google Scholar 

  81. A. Higgs: A digital rotating system. J. Phys. E 15, 266 (1982)

    ADS  Google Scholar 

  82. W. Bröcker, G. Hauck, H. Weigelt, G. Pfefferkorn: Lock-in technique applied to cathodoluminescence of biomedical specimens in the SEM. Scanning 4, 165 (1981)

    Google Scholar 

  83. L.J. Balk, E. Kubalek: Use of phase sensitive-(lock-in)-amplification with SEM. Beitr. elektr. mikr. Direktabb. Oberfl. 6, 551 (1973)

    Google Scholar 

  84. A.E. Lukianov, G.V. Spivak: Electron mirror microscopy of transient phenomena in semiconductor diodes. In Electron Microscopy 1966, Vo1. I, ed. by R. Uyeda ( Maruzen, Tokyo 1966 ) p. 611

    Google Scholar 

  85. O.I. Szentesi: Stroboscopic electron mirror microscopy at frequencies up to 100 MHz. J. Phys. E 5, 563 (1972)

    ADS  Google Scholar 

  86. M. Weinfeld, A. Bouchoule: Electron gun for generation of subnanosecond electron packets at very high repetition rate. Rev. Sci. Instr. 47, 412 (1976)

    ADS  Google Scholar 

  87. S.M. Davidson: Wehnelt modulation beam blanking in the SEM. In Electron Microscopy and Analysis 1981, ed. by M.J. Goringe ( Inst. of Physics, Bristol 1982 ) p. 39

    Google Scholar 

  88. R. Schief, M. Steiner: Energieverbreiterung eines durch hochfrequente Wehneltspannung gepulsten Elektronenstrahles. Optik 38, 261 (1973)

    Google Scholar 

  89. A.J. Gonzales, M.W. Powell: Internal waveform measurements of the MOS three transistor, dynamic RAM using SEM stroboscopic techniques. Techn. Digest of IEDM, IEEE, New York 1975, p. 119

    Google Scholar 

  90. G.S. Plows, W.C. Nixon: Stroboscopic SEM. J. Phys. E 1, 595 (1968)

    ADS  Google Scholar 

  91. E. Menzel, E. Kubalek: Electron beam chopping in the SEM. SEM 1979/I ( SEM Inc., AMF O’Hare, IL 1979 ) p. 305

    Google Scholar 

  92. J.T.L. Thong, B.C. Breton, W.C. Nixon: High repetition rate electron beam chopping system for electron beam testing at microwave frequencies. J. Vac. Sci. Techn. B 8, 2048 (1990)

    Google Scholar 

  93. K. Ozaki, A. Ito, Y. Goto, Y. Furukawa, T. Inagaki: Electron beam probing system with ultrahigh time resolution. J. Vac. Sci. Techn. B 5, 84 (1987)

    Google Scholar 

  94. ] A. Gopinath, M.S. Hill: SEM stroboscopy at 9 GHz. SEM 1973 (ITTRI, Chicago) p.197

    Google Scholar 

  95. G.Y. Robinson: Stroboscopic SEM at GHz frequencies. Rev. Sci. Instr. 42, 251 (1971)

    ADS  Google Scholar 

  96. K. Ura, H. Hujioka, T. Hosokawa: Electron optical design of picosecond pulse stroboscopic SEM. SEM 1978/I ( SEM Inc., AMF O’Hare, IL 1978 ) p. 747

    Google Scholar 

  97. T. Hosokawa, H. Fujioka, K. Ura: Generation and measurement of subpicosecond electron beam pulses. Rev. Sci. Instr. 49, 624 (1978)

    ADS  Google Scholar 

  98. A. Gopinath, M.S. Hill: Deflection beam chopping in the SEM. J. Phys. E 10, 229 (1977)

    ADS  Google Scholar 

  99. J. Stabenow: Herstellung dünnwandiger Objektivaperturblenden für die Elektronenmikroskopie. Naturwiss. 54, 163 (1967)

    ADS  Google Scholar 

  100. E. Schablach: A method for the fabrication of thin foil apertures for electron microscopy. J. Microsc. 101, 121 (1974)

    Google Scholar 

  101. J.P. Martin, R. Speidel: Zur Verwendung von DünnschichtAperturblenden im Elektronen-Rastermikroskop. Beitr. elektr. mikr. Direktabb. Oberfl. 4 /2, 345 (1971)

    Google Scholar 

  102. N.C. Yew: Dynamic focusing technique for tilted samples in SEM. SEM 1971 ( ITTRI, Chicago 1971 ) p. 33

    Google Scholar 

  103. J. Hersener, Th. Ricker: Eine automatische Fokussierungseinrichtung für Rasterelektronenmikroskope. Beitr. elektr. mikr. Direktabb. Oberft. 5, 377 (1972)

    Google Scholar 

  104. S. Shirai, A. Onoguchi, T. Ichinogawa: An automatic focusing system for the SEM. In Proc. 6th Int’l. Conf. on X-Ray Optics and Microanalysis, ed. by G. Shinoda et al. ( Univ. Tokyo Press, Tokyo 1972 ) p. 511

    Google Scholar 

  105. W.J. Tee, K.C.A. Smith, D.M. Holburn: An automatic focusing and stigmating system for the SEM. J. Phys. E 12, 35 (1979)

    ADS  Google Scholar 

  106. S.J. Erasmus, K.C.A. Smith: An automatic focusing and astigmatism correction system for the SEM and CTEM. J. Microsc. 127, 185 (1982)

    Google Scholar 

  107. P.E. Batson: Imaging of bulk inter-band excitations in small structures with inelastically scattered electrons, in Electron Microscopy 1986, Vol.1, ed. by T. Imura et al. ( Jpn. Soc. Electron Microscopy, Tokyo 1986 ) p. 95

    Google Scholar 

  108. T.E. Everhart, N. Saeki, R. Shimizu, T. Koshikawa: Measurement of structure in the energy distribution of slow secondary electrons from aluminium. J. Appl. Phys. 47, 2941 (1976)

    ADS  Google Scholar 

  109. R.F.W. Pease, W.C. Nixon: High resolution SEM. J. Sci. Instr. 42, 81 (1965)

    ADS  Google Scholar 

  110. A.N. Broers: A new high resolution reflection SEM. Rev. Sci. Instr. 40, 1040 (1969)

    ADS  Google Scholar 

  111. ] P. Gentsch, H. Gilde, L. Reimer: Measurement of the top-bottom effect in STEM of thick amorphous specimens. J. Microsc. 100, 81 (1974)

    Google Scholar 

  112. S.A. Rishton, S.P. Beaumont, C.D.W. Wilkinson: Measurement of the profile of finely focused electron beams in a SEM. J. Phys. E 17, 296 (1984)

    ADS  Google Scholar 

  113. K. Schur, Ch. Schulte, L. Reimer: Auflösungsvermögen und Kontrast von Oberflächenstufen bei der Abbildung mit einem Raster-Elektronenmikroskop. Z. Angew. Phys. 23, 405 (1967)

    Google Scholar 

  114. J. Bentley, N.D. Evans, E.A. Kenik: Resolution measurement for SEM. In Electron Microscopy 1994, Vol.1, ed. by B. Jouffrey, C. Colliex (Les Éditions de Physique, Les Ulis, France ) p. 109

    Google Scholar 

  115. R. Speidel, J.P. Martin, B. Bauer: Testobjekte für die Bestimmung des Punktauflösungsvermögens im Elektronen-Rastermikroskop. Optik 34, 321 (1971)

    Google Scholar 

  116. L. Reimer, B. Volbert, P. Bracker: Quality control of SEM micrographs by laser diffractometry. Scanning 1, 233 (1978)

    Google Scholar 

  117. S.J. Erasmus, D.M. Holburn, K.C.A. Smith: On-line computation of diffractograms for the analysis of SEM images. Scanning 3, 273 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1998). Electron Optics of a Scanning Electron Microscope. In: Scanning Electron Microscopy. Springer Series in Optical Sciences, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38967-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38967-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08372-3

  • Online ISBN: 978-3-540-38967-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics