Skip to main content

Electrochemical Sensor Applications to the Study of Molecular Physiology and Analyte Flux in Plants

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann D (1986) Ion-selective micro-electrodes, principles, design and application. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Arif I, Newman IA (1993) Proton efflux from oat coleoptile cells and exchange with wall calcium after IAA or fusicoccin treatment. Planta 189:377–383.

    Article  CAS  Google Scholar 

  • Arif I, Newman IA, Keenlyside N (1995) Proton flux measurement from tissues in buffered solution. Plant Cell Environ 18:1319–1324.

    Article  CAS  Google Scholar 

  • Baikie ID, Smith PJS, Porterfield DM, Estrup PJ (1999) Multi-tip scanning Bio-Kelvin probe. Rev Sci Instr 70:1842–1850.

    Article  CAS  Google Scholar 

  • Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97:3083–3132.

    Article  CAS  PubMed  Google Scholar 

  • Blüh O, Scott BIH (1950) Vibrating probe electrometer for the measurement of bioelectric potentials. Rev Sci Inst 21:867–868.

    Article  Google Scholar 

  • Bogorff DJ, Messerli MA, Malchow RP, Smith PJ (2003) Development and characterization of a self-referencing glutamate-selective micro biosensor. Biol Bull 205:207–208.

    Article  CAS  PubMed  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865.

    Article  CAS  Google Scholar 

  • Buerk DG (2004) Measuring tissue PO2 with microelectrodes. Method Enzymol 381:665–690.

    Article  CAS  Google Scholar 

  • Crank J (1967) The mathematics of diffusion. Oxford University Press, London.

    Google Scholar 

  • Csöregi E, Quinn CP, Schmidtke DW, Lindquist S-E, Pishko MV, Ye L, Katakis I, Hubbell JA, Heller A (1994) Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Anal Chem 66:3131–3138.

    Article  PubMed  Google Scholar 

  • Davies PW (1966) Membrane potential and resistance of perfused skeletal muscle fibers with control of membrane current. Fed Proc 25:332.

    Google Scholar 

  • Demarest JR, Morgan JLM (1995) Effect of pH buffers on proton secretion from gastric oxyntic cells measured with vibrating ion-selective microelectrodes. Biol Bull 189:219–220.

    CAS  PubMed  Google Scholar 

  • Doughty JM, Langton PD (2001) Measurement of chloride flux associated with the myogenic response in rat cerebral arteries. J Physiol 534(3):753–761.

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406.

    Article  CAS  PubMed  Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496.

    Article  PubMed  Google Scholar 

  • Fleet B, Ryan TH, Brand MJD (1974) Investigations of the factors affecting the response time of a calcium selective liquid membrane electrode. Anal Chem 46:12–15.

    Article  CAS  Google Scholar 

  • Friedemann MN, Robinson SW, Gerhardt GA (1996) O-Phenylendediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 1023:421–425.

    Google Scholar 

  • Garber SS, Messerli MA, Hubert M, Lewis R, Hammar K, Indyk E, Smith PJS (2005) Monitoring Cl- movement in single cells exposed to hypotonic solution. J Memb Biol 203:101–110.

    Article  CAS  Google Scholar 

  • Gow NAR, Kropf DL, Harold FM (1984) Growing hyphae of Achlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J Gen Microbiol 130:2967–2974.

    CAS  PubMed  Google Scholar 

  • Grahm L (1964) Measurements of geoelectric and auxin-induced potentials in coleoptiles with a refined vibrating electrode technique. Physiol Plantarum 17:231–261.

    Article  Google Scholar 

  • Grahm L, Hertz CH (1962) Measurement of the geoelectric effect in coleoptiles by a new technique. Physiol Plantarum 15:96–114.

    Article  Google Scholar 

  • Grahm L, Hertz CH (1964) Measurement of the geoelectric effect in coleoptiles. Physiol Plantarum 17:186–201.

    Article  Google Scholar 

  • Griessner M, Obermeyer G (2003) Characterization of whole-cell K+ currents across the plasma membrane of pollen grain and tube protoplasts of Lilium longiflorum. J Membr Biol 193:99–108.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen GH, Raman DR, Walker LP, Spanswick RM (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol 99:734–747.

    Article  CAS  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LF, Levy S (1987) Calcium gradients measured with a vibrating calcium-selective electrode. Proc IEEE/EMBS Conf 9:779–781.

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63:614–628.

    Article  CAS  PubMed  Google Scholar 

  • Jung S-K, Hammar K, Smith PJS (2000a) Development of self-referencing oxygen microsensor and its application to single HIT cells. Biol Bull 199:197–198.

    Article  CAS  PubMed  Google Scholar 

  • Jung S-K, Kauri LM, Qian WJ, Kennedy RT (2000b) Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca2+ in single islets of Langerhans. J Biol Chem 275:6642–6650.

    Article  CAS  PubMed  Google Scholar 

  • Jung S-K, Trimarchi JR, Sanger RH, Smith PJS (2001) Development and application of a self-referencing glucose microsensor for the measurement of glucose consumption by pancreatic b-cells. Anal Chem 73:3759–3767.

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Shaff JE, Kühtreiber WM, Jaffe LF, Lucas WJ (1992) Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+, and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601–610.

    Article  CAS  Google Scholar 

  • Kühtreiber WM, Jaffe LF (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565–1573.

    Article  PubMed  Google Scholar 

  • Kumar SM, Porterfield DM, Muller KJ, Smith PJ, Sahley CL (2001) Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J Neurosci 21:215–220.

    CAS  PubMed  Google Scholar 

  • Land SC, Porterfield DM, Sanger RH, Smith PJS (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202:211–218.

    CAS  PubMed  Google Scholar 

  • Lindner E, Gyurcsányi RE, Buck RP (1999) Tailored transport through ion-selective membranes for improved detection limits and selectivity coefficients. Electroanalysis 11:695–702.

    Article  CAS  Google Scholar 

  • Mancuso S, Paeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterization of transmembrane oxygen fluxes in plants. Planta 211:384–389.

    Article  CAS  PubMed  Google Scholar 

  • Mathison S, Bakker E (1998) Effect of transmembrane electrolyte diffusion on the detection limit of carrier-based potentiometric ion sensors. Anal Chem 70:303–309.

    Article  CAS  Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110:1269–1278.

    CAS  PubMed  Google Scholar 

  • Messerli MA, Robinson KR (1998) Cytoplasmic acidification and current influx follow growth pulses of Lilium longiflorum pollen tubes. Plant J 16:87–91.

    Article  CAS  Google Scholar 

  • Messerli MA, Danuser G, Robinson KR (1999) Pulsatile fluxes of H+, K+, and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509.

    CAS  PubMed  Google Scholar 

  • Messerli MA, Smith PJS, Lewis RC, Robinson KR (2004) Chloride fluxes in lily pollen tubes: a critical reevaluation. Plant J 40:799–812.

    Article  CAS  PubMed  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes of Lilium. J Cell Sci 101:7–12.

    CAS  Google Scholar 

  • Nuccitelli R (1991) Vibrating probe technique for studies of ion transport. In: Foskett JK, Grinstein S (eds) Noninvasive techniques in cell biology. Wiley-Liss, New York, pp 273–310.

    Google Scholar 

  • Pepperell JR, Porterfield DM, Keefe DL, Behrman HR, Smith PJS (2003) Control of ascorbic acid efflux in rat luteal cells: role of intracellular calcium and oxygen radicals. Am J Physiol 285:C642–C651.

    CAS  Google Scholar 

  • Pergel E, Gyurcsanyi RE, Toth K, Lindner E (2001) Picomolar detection limits with current-polarized Pb2+ ion-selective membranes. Anal Chem 73: 4249–4253.

    Article  CAS  PubMed  Google Scholar 

  • Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trends Anal Chem 22:509–514.

    Article  CAS  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley NM, Rivers BA, Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic medium. Plant Cell 6:1815–1828.

    Article  CAS  PubMed  Google Scholar 

  • Pierson ES, Li YQ, Zhang GQ, Willemse MTM, Liskens HF, Cresti M (1995) Pulsatory growth of pollen tubes: investigation of a possible relationship with the periodic distribution of cell wall components. Acta Bot Neerl 44:121–128.

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173.

    Article  CAS  PubMed  Google Scholar 

  • Pineros MA, Shaff JE, Kochian LV (1998) Development, characterization and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401.

    Article  CAS  PubMed  Google Scholar 

  • Porterfield DM, Laskin JD, Jung S-K, Malchow RP, Billack B, Smith PJS, Heck DE (2001) Proteins and lipids define the diffusional field of nitric oxide. Measurement of nitric oxide fluxes from macrophages using a self-referencing electrode. Am J Physiol 281:L904–L912.

    CAS  Google Scholar 

  • Pu RS, Robinson KR (2003) The involvement of Ca2+ gradients, Ca2+ fluxes, and CaM kinase II in polarization and germination of Silvetia compressa zygotes. Planta 217:407–416.

    Article  CAS  PubMed  Google Scholar 

  • Rathore KS, Cork RJ, Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148:612–619.

    Article  CAS  PubMed  Google Scholar 

  • Robinson KR, Jaffe LF (1973) Ion movements in a developing fucoid egg. Dev Biol 35:349–361.

    Article  CAS  PubMed  Google Scholar 

  • Robinson KR, Jaffe LF (1975) Polarizing fucoid eggs drive a calcium current through themselves. Science 187:70–72.

    Article  CAS  PubMed  Google Scholar 

  • Sanger R, Karplus E, Jaffe LF (1990) An aerial vibrating probe. Biol Bull 179:225.

    Google Scholar 

  • Schneiderman G, Goldstick TK (1976) Oxygen fields induced by recessed and needle oxygen microelectrodes in homogenous media. Adv Exp Med Biol 75:9–16.

    CAS  PubMed  Google Scholar 

  • Schneiderman G, Goldstick TK (1978) Oxygen electrode design criteria and performance characteristics: recessed cathode. J Appl Physiol 45:145–154.

    CAS  PubMed  Google Scholar 

  • Shabala S, Newman I (1998) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119:1115–1124.

    Article  Google Scholar 

  • Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51:1243–1253.

    Article  CAS  PubMed  Google Scholar 

  • Smith PJS, Hammar K, Porterfield DM, Sanger RH, Trimarchi JR (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Techniq 46:398–417.

    Article  CAS  Google Scholar 

  • Twig G, Jung S-K, Messerli M, Smith PJS, Shirihai O (2001) Real-time detection of reactive oxygen intermediates from single microglial cells. Biol Bull 201:261–262.

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Graf SA, Messerli MA, Smith PJS, Yoo SH, Shirihai OS (2005) Synergistic amplification of beta-amyloid- and interferon-gamma-induced microglial neurotoxic response by the senile plaque component chromogranin A. Am J Physiol 288:C169–C175.

    CAS  Google Scholar 

  • Weisenseel MH, Jaffe LF (1976) The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133:1–7.

    Article  Google Scholar 

  • Weisenseel MH, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567.

    Article  CAS  PubMed  Google Scholar 

  • Whalen WJ, Riley J, Nair P (1967) A microelectrode for measuring intracellular PO2. J Appl Physiol 23:798–801.

    CAS  PubMed  Google Scholar 

  • Zhang X, Kislyak Y, Lin J, Dickson A, Coradosa L, Broderick M, Fein H (2002) Nanometer size electrode for nitric oxide and S-nitrosothiols measurement. Electrochem Commun 4:11–16.

    Article  CAS  Google Scholar 

  • Zonia L, Cordeiro S, Tupy J, Feijó JA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3, 4, 5, 6-tetrakisphosphate. Plant Cell 14:2233–2249.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Messerli, M.A., Robinson, K.R., Smith, P.J.S. (2006). Electrochemical Sensor Applications to the Study of Molecular Physiology and Analyte Flux in Plants. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_4

Download citation

Publish with us

Policies and ethics