Skip to main content

Electrochemistry of Plant Life

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe S, Takeda J, Senda M (1980) Resting membrane potential and action potential of Nitella expansa protoplasts. Plant Cell Physiol 21:537–546.

    Google Scholar 

  • Abe T (1981) Chloride ion efflux during an action potential in the main pulvinus of Mimosa pudica. Bot Mag 94:79–383.

    Article  Google Scholar 

  • Bertholon M (1783) De l’electricite des vegetaux : ouvrage dans lequel on traite de l’electricite de l’atmosphere sur les plantes, de ses effets sur l’economie des vegetaux, de leurs vertus medicaux. Didotjeune, Paris.

    Google Scholar 

  • Bois-Reymond DE (1848) Untersuchungen über Thierische Elektricität, Erster Band. Reimer, Berlin, pp 7–10.

    Google Scholar 

  • Bose JC (1914) An automatic method for the investigation of velocity of transmission of excitation in mimosa. Philos Trans B 204:63–97.

    Article  Google Scholar 

  • Bose JC (1925) Transmission of stimuli in plants. Nature 115:457–457.

    Article  Google Scholar 

  • Bose JC (1926) The nervous mechanism of plants. Longmans Green, New York.

    Google Scholar 

  • Bose JC (1927) Plant autographs and their revelations. Macmillan, New York.

    Google Scholar 

  • Brown CL, Mbyirurukira G, Osei AJ, Volkov AG (2005) Effects of ion channel blockers on signal transduction in green plants. Biophys J 88:430a–430a.

    Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Proc R Soc Lond 21:495–496.

    Google Scholar 

  • Burdon-Sanderson J (1888) On the electromotive properties of Dionaeva in the excited and unexcited states. Philos Trans 179:417–449.

    Article  Google Scholar 

  • Burdon-Sanderson J, Page FJM (1876) On the mechanical effects and on the electrical disturbance consequent on excitation of the leaf of Dionaeva muscipula. Proc R Soc Lond 25:411–434.

    Article  Google Scholar 

  • Davies E (1983) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631.

    Article  Google Scholar 

  • Davies E, Shuster A (1981) Intercellular communication in plants: evidence for rapidly generated, bidirectionally transmitted wound signal. Proc Natl Acad Sci USA 78:2422–2426.

    Article  CAS  PubMed  Google Scholar 

  • Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? Plant signaling, plasma membrane and change of state. Universite de Geneve, Geneve, pp 119–137.

    Google Scholar 

  • Eschrich W, Fromm J (1989) Correlation of ionic movements with phloem unloading and loading in barley leaves. Plant Physiol Biochem 25:577–585.

    Google Scholar 

  • Eschrich W, Fromm J (1994) Evidence for two pathways of phloem loading. Physiol Plant 90:699–707.

    Article  Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electrical signals in sieve tubes of zucchini plants. Bot Acta 101:327–331.

    Google Scholar 

  • Fensom DS (1958) The bioelectric potentials of plants and their functional significance II: The patterns of bioelectric potential and exudation rate in excised sunflower roots and stems. Can J Bot 36:367–383.

    Article  Google Scholar 

  • Fensom DS, Spanner DC (1969) Electro-osmotic and biopotential measurement on phloem strands of nymhoides. Planta 88:321–331.

    Article  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533.

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469.

    Article  Google Scholar 

  • Fromm J, Eschrich W (1989) Electric signals released from roots of Willow (Salix viminalis L.) Change transpiration and photosynthesis. J Plant Physiol 141:673–680.

    Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125.

    Article  Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action potentials. J Theor Biol 103:645–648.

    Article  Google Scholar 

  • Gunar II, Sinyukhin AM (1963) Functional significance of action currents affecting the gas exchange of higher plants. Sov Plant Physiol 10:219–226.

    Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Hill R, Bendal P (1960) Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186:136–137.

    Article  CAS  Google Scholar 

  • Hidgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.

    Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic Press, San Diego.

    Google Scholar 

  • Labady A, Thomas D’J, Shvetsova T, Volkov AG (2002) Plant electrophysiology: excitation waves and effects of CCCP on electrical signaling in soybean. Bioelectrochem 57:47–53.

    Article  CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, From J (2005) Characteristics of electrical sifnals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209.

    Article  CAS  PubMed  Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithofer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intercellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–1762.

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi, Watanabe Y, Matsuzaki H, Ikezawa Y, Takamura T (1994) Growth acceleration of bean sprouts by the application of electrochemical voltage in a culturing bath. Denki Kagaku 62:1083–1085.

    CAS  Google Scholar 

  • Mwesigwa J, Collins DJ, Volkov AG (2000) Electrochemical signaling in green plants: effects of 2, 4-dinitrophenol on resting and action potentials in soybean. Bioelectrochem 51:201–205.

    Article  CAS  Google Scholar 

  • Pickard BC (1973) Action potentials in higher plants. Bot Rev 38:172–201.

    Article  Google Scholar 

  • Pyatygin SS, Opritov VA (1990) Effect of temperature on action potentials generating in higher plant excitable cells. Biophysics 35:444–449.

    Google Scholar 

  • Shvetsova T, Mwesigwa J, Volkov AG (2001) Plant electrophysiology: FCCP induces fast electrical signaling in soybean. Plant Sci 161:901–909.

    Article  CAS  Google Scholar 

  • Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas D’J, Lewis K, Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731.

    Article  CAS  Google Scholar 

  • Sibaoka T (1962) Excitable cells in mimosa. Science 137:226–228.

    Article  CAS  PubMed  Google Scholar 

  • Sinukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plant. Nature 215:1278–1280.

    Article  Google Scholar 

  • Sinukhin AM, Gorchakov VV (1966) Characteristics of the action potentials of the conducting systems of pumpkin stems evoked by various stimuli. Sov Plant Physiol 13:727–733.

    Google Scholar 

  • Sinukhin AM, Gorchakov VV (1968) Role of the vascular bundles of the stem in long-distance transmission of stimulation by means of bioelectric impulses. Sov Plant Physiol 15:400–407.

    Google Scholar 

  • Sinukhin AM, Gorchakov VV (1996) Action potentials of higher plants not possessing motor activity. Biophysics 11:966–975.

    Google Scholar 

  • Siomons PJ (1981) The role of electricity in plant movements. New Physiologist 87:11–37.

    Article  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279.

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG (1989) Oxygen evolution in the course of photosynthesis. Bioelectrochem Bioenerg 21:3–24.

    Article  CAS  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156.

    Article  CAS  Google Scholar 

  • Volkov AG (2002) Biocatalysis: electrochemical mechanisms of respiration and photosynthesis. In: Volkov AG (ed) Interfacial catalysis. Dekker, New York, pp 1–22.

    Google Scholar 

  • Volkov AG, Haack RA (1995) Insect induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 35:55–60.

    Article  Google Scholar 

  • Volkov AG, Jovanov E (2002) Electrical signaling in green plants: action potentials. In: Jan J, Kozumplik J, Provaznik J (eds) Analysis of biomedical signals and images. Vutum Press, Brno, pp 36–38.

    Google Scholar 

  • Volkov AG, Mwesigwa J (2001a) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications. Dekker, New York, pp 649–681.

    Google Scholar 

  • Volkov AG, Mwesigwa J (2001b) Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. J Electroanal Chem 496:153–157.

    Article  CAS  Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DL, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York.

    Google Scholar 

  • Volkov AG, Collins DJ, Mwesigwa J (2000) Plant electrophysiology: pentachlorophenol induces fast action potentials in soybean. Plant Sci 153:185–190.

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Labady A, Thomas D’J, Shvetsova T (2001a) Green plants as environmental biosensors: electrochemical effects of carbonyl cyanide 3-chlorophenylhydrazone on soybean. Anal Sci 17 [Suppl]:i359–i362.

    Article  Google Scholar 

  • Volkov AG, Mwesigwa J, Shvetsova T (2001b) Soybean as an environmental biosensor: action potentials and excitation waves. In: Butler M, Vanysek P, Yamazoe N (eds) Chemical and biological sensors and analytical methods II. Electrochemical Society, Pennington, pp 229–238.

    Google Scholar 

  • Volkov AG, Mwesigwa J, Jovanov E, Labady A, Thomas DJ, Lewis K, Shvetsova T (2002a) Acid rain induces action potentials in green plants. In: Cerutti S, Akay M, Mainardi LT, Sato S, Zywietz C (eds) Proceedings of the IVth international workshop on biosignal interpretation BSI2002, Milan, Polytechnic University Press, pp 513–517.

    Google Scholar 

  • Volkov AG, Mwesigwa J, Labady A, Kelly S, Lewis K, Shvetsova T (2002b) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731.

    Article  Google Scholar 

  • Volkov AG, Shvetsova T, Markin VS (2002c) Waves of excitation and action potentials in green plants. Biophys J 82:18a–218a.

    Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Ruff D, Morgan SA (2004a) Electrochemical signaling in green plants induced by photosensory systems: molecular recognition of the direction of light. In: Bruckner-Lea C, Hunter G, Miura K, Vanysek P, Egashira M, Mizutani F (eds) Chemical sensors VI: chemical and biological sensors and analytical methods. Electrochemical Society, Pennington, pp 344–353.

    Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D II, Boyce Y, Labady A J (2004b) Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochemistry 63:91–94.

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Brown C (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 50:4241–4247.

    Article  CAS  Google Scholar 

  • Zavadzki T (1980) Action potentials in Lipinus angustifolius L. shoots. V. Spread of excitation in the stem, leaves and root. J Exp Bot 31:1371–1377.

    Article  Google Scholar 

  • Zavadzki T, Davis E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus-Annus. Physiol Planet 83:601–604.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volkov, A.G., Brown, C.L. (2006). Electrochemistry of Plant Life. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_19

Download citation

Publish with us

Policies and ethics