Skip to main content

Studying the Birch and Swinnerton-Dyer conjecture for modular abelian varieties using Magma

  • Chapter
Discovering Mathematics with Magma

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 19))

  • 1674 Accesses

Abstract

In this paper we describe the Birch and Swinnerton-Dyer conjecture in the case of modular abelian varieties and how to use Magma to do computations with some of the quantities that appear in the conjecture. We assume the reader has some experience with algebraic varieties and number theory, but do not assume the reader has proficiency working with elliptic curves, abelian varieties, modular forms, or modular symbols. The computations give evidence for the Birch and Swinnerton- Dyer conjecture and increase our explicit understanding of modular abelian varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. A. Agashe, W. A. Stein, The Manin constant, congruence primes, and the modular degree. Submitted.

    Google Scholar 

  2. 2. A. Agashe, W. A. Stein, Visible Evidence for the Birch and Swinnerton-Dyer Conjecture for Modular Abelian Varieties of Analytic Rank 0, Math. Comp. 74-249 (2005), 455–484.

    Article  MathSciNet  Google Scholar 

  3. 3. A. Agashe, W. A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97-1 (2002), 171–185.

    Article  MathSciNet  Google Scholar 

  4. 4. A. O. L. Atkin, J. Lehner, Hecke operators on à 0(m), Math. Ann. 185 (1970), 134–160.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. B. J. Birch, Conjectures concerning elliptic curves, pp. 106–112 in: Proceedings of Symposia in Pure Mathematics, VIII, Providence (R.I.): Amer. Math. Soc., 1965.

    Google Scholar 

  6. 6. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Berlin: Springer-Verlag, 1990.

    MATH  Google Scholar 

  7. 7. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265. See also the Magma home page at http://magma.maths.usyd.edu.au/magma/.

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14-4 (2001), 843–939 (electronic).

    Article  MathSciNet  Google Scholar 

  9. 9. J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291.

    Article  MathSciNet  Google Scholar 

  10. 10. B. Conrad, S. Edixhoven, W.A. Stein, J1(p) Has Connected Fibers, Documenta Mathematica 8 (2003), 331–408.

    MATH  MathSciNet  Google Scholar 

  11. 11. B. Conrad, W. A. Stein, Component Groups of Purely Toric Quotients of Semistable Jacobians, Math. Res. Letters 8–5/6 (2001), 745–766.

    MathSciNet  Google Scholar 

  12. 12. J. E. Cremona, Modular symbols for à 1(N) and elliptic curves with everywhere good reduction, Math. Proc. Cambridge Philos. Soc., 111-2 (1992), 199–218.

    MathSciNet  Google Scholar 

  13. 13. J. E. Cremona, Algorithms for modular elliptic curves, Cambridge: Cambridge University Press, second edition, 1997.

    MATH  Google Scholar 

  14. 14. F. Diamond, J. Im, Modular forms and modular curves, pp. 39–133 in: Seminar on Fermat's Last Theorem, Providence, RI, 1995.

    Google Scholar 

  15. 15. B. Edixhoven, On the Manin constants of modular elliptic curves, pp. 25–39 in: G. van der Geer, F. Oort et al., (eds) Arithmetic Algebraic Geometry, Basel: Birkhäuser, Progress in Mathematics 89, 1991.

    Google Scholar 

  16. 16. E. V. Flynn, F. Leprévost, E. F. Schaefer, W. A. Stein, M. Stoll, J. L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves,Math. Comp. 70-236 (2001), 1675–1697 (electronic).

    Article  Google Scholar 

  17. 17. B. Gross, D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84-2 (1986), 225–320.

    Article  MathSciNet  Google Scholar 

  18. 18. Clay Mathematics Institute, Millennium prize problems, http://www.claymath.org/millennium_prize_problems/.

  19. 19. K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, preprint, 244 pages.

    Google Scholar 

  20. 20. D. R. Kohel, W. A. Stein, Component Groups of Quotients of J0(N), pp. 405–412 in: Wieb Bosma (ed.), Proceedings of the 4th International Symposium (ANTS-IV), Leiden, Netherlands, July 2–7, 2000, Springer: Berlin, 2000.

    Google Scholar 

  21. 21. V. A. Kolyvagin, D. Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1-5 (1989), 171–196.

    Google Scholar 

  22. 22. H. W. Lenstra, Jr., F. Oort, Abelian varieties having purely additive reduction, J. Pure Appl. Algebra 36-3 (1985), 281–298.

    Article  MathSciNet  Google Scholar 

  23. 23. W-C. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315.

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. J. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.

    MATH  MathSciNet  Google Scholar 

  25. 25. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes études Sci. Publ.Math. No. 21 (1964), 128.

    Google Scholar 

  26. 26. K. A. Ribet, On modular representations Gal of Gal(Q/Q) arising from modular forms, Invent. Math. 100-2 (1990), 431–476.

    Article  MathSciNet  Google Scholar 

  27. 27. K. A. Ribet, Raising the levels of modular representations, In: Séminaire de Théorie des Nombres, Paris 1987–88, Boston: Birkhäuser, 1990, pp. 259–271.

    Google Scholar 

  28. 28. K. A. Ribet, Abelian varieties over Q and modular forms, pp. 53–79 in: Algebra and topology 1992 (Taej¢on), Korea Adv. Inst. Sci. Tech., Taej¢on, 1992.

    Google Scholar 

  29. 29. K. A. Ribet, W. A. Stein, Lectures on Serre's conjectures, pp. 143–232 in: Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser. 9, Providence (R.I.): Amer. Math. Soc., 2001.

    Google Scholar 

  30. 30. J-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54-1 (1987), 179–230.

    Article  MathSciNet  Google Scholar 

  31. 31. I. R. Shafarevich, Exponents of elliptic curves, Dokl. Akad. Nauk SSSR (N.S.) 114 (1957), 714–716.

    MATH  MathSciNet  Google Scholar 

  32. 32. G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25-3 (1973), 523–544.

    Article  MathSciNet  Google Scholar 

  33. 33. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton (NJ): Princeton University Press, 1994. Reprint of the 1971 original, Kan Memorial Lectures 1.

    MATH  Google Scholar 

  34. 34. J. H. Silverman, The arithmetic of elliptic curves, New York: Springer-Verlag, 1992. Corrected reprint of the 1986 original.

    Google Scholar 

  35. 35. J. H. Silverman, J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, New York: Springer-Verlag, 1992.

    Google Scholar 

  36. 36. W. A. Stein, Modular Symbols, Chapter 100 in: John Cannon, Wieb Bosma (eds.), Handbook of Magma Functions, Version 2.11, Volume 7, Sydney, 2004, pp. 2947–3002.

    Google Scholar 

  37. 37. W. A. Stein, An introduction to computing modular forms using modular symbols, to appear in an MSRI Proceedings.

    Google Scholar 

  38. 38. W. A. Stein, Shafarevich-Tate groups of nonsquare order, in: J. Cremona, J.-C. Lario, J. Quer, K. Ribet (eds), Proceedings of MCAV 2002, Progress of Mathematics (to appear). Proceedings of Modular Curves and Abelian Varieties, Progress in Mathematics 224, 2004.

    Google Scholar 

  39. 39. W. A. Stein, Explicit approaches to modular abelian varieties, Ph.D. thesis, University of California, Berkeley, 2000.

    Google Scholar 

  40. 40. G. Stevens, Arithmetic on modular curves, Boston Mass.: Birkhäuser, 1982.

    MATH  Google Scholar 

  41. 41. J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, pp. 415–440 in: Séminaire Bourbaki 9, Exp. No. 306, Paris: Soc. Math. France, 1995.

    Google Scholar 

  42. 42. R. Taylor, A. J. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141-3 (1995), 553–572.

    Article  MathSciNet  Google Scholar 

  43. 43. A. J. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141-3 (1995), 443–551.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Stein, W. (2006). Studying the Birch and Swinnerton-Dyer conjecture for modular abelian varieties using Magma. In: Bosma, W., Cannon, J. (eds) Discovering Mathematics with Magma. Algorithms and Computation in Mathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37634-7_4

Download citation

Publish with us

Policies and ethics