Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 14))

Abstract

Stroke is a debilitating condition with major costs for patients and their care-givers. Here we present a novel virtual reality (VR) based cognitive neurorehabilitation system for improving the rehabilitation of stroke patients with arm and hand paresis. Using a custom, low-cost kinematic tracking system designed for clinical or home use, patients engage in task-oriented interactions with objects in a virtual environment. Our paradigm is based on the hypothesis that observed actions correlated with self-generated or intended actions activate the motor pathways by means of the so-called “mirror-system”. This cognitive approach engages cortical motor observation, planning and execution areas. Combined with intensive, task-oriented acute-phase training (1–6 weeks after stroke) when the factors for facilitating recovery are at their highest levels, we postulate that our approach will facilitate cortical plasticity and improve recovery of upper limb function. The tasks range from simple (hitting moving virtual objects) to complex (grasping and moving virtual objects). In the first-person VR environment the patient controls a displayed pair of upper limbs that follow the position and movements of his/her own arms and hands while performing the tasks. The therapist can adjust the contribution of the non-paretic hand in “assisting” the representation of the paretic hand to varying degrees in performing the tasks, simultaneously stimulating the action recognition systems and increasing patient motivation through graded task success. In this paper we present the neuroscientific background of the system, a technical description of its components, and results from testing on healthy subjects and stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Nakayama, H. S. Jorgensen, H. O. Raaschou, and T. S. Olsen, Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study, Arch. Phys. Med. Rehabil., vol. 75, pp. 394–398, 1994.

    Article  Google Scholar 

  2. G. Kwakkel, B. Kollen, and E. Lindeman, Understanding the pattern of functional recovery after stroke: facts and theories, Restor. Neurol. Neurosci., vol. 22, pp. 281–299, 2004.

    Google Scholar 

  3. M. K. Holden, T. A. Dyer, L. Schwamm, and E. Bizzi, Virtual-Environment-Based Telerehabilitation in Patients with Stroke, Presence, vol. 14, pp. 214–233, 2005.

    Article  Google Scholar 

  4. M. Holden, Virtual Environments for motor rehabilitation, CyberPsychology & Behavior, vol. 8, 2005.

    Google Scholar 

  5. S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari, Robotic Orthosis Lokomat: A Rehabilitation and Research Tool, Neuromodulation, vol. 6, pp. 108–115, 2003.

    Article  Google Scholar 

  6. H. Hummelsheim, M. L. Maier-Loth, and C. Eickhof, The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients, Scand J Rehabil Med, vol. 29, pp. 3–10, 1997.

    Google Scholar 

  7. S. Hesse, H. Schmidt, C. Werner, and A. Bardeleben, Upper and lower extremity robotic devices for rehabilitation and for studying motor control, vol. 16, pp. 705–710, 2003.

    Google Scholar 

  8. B. T. Volpe, M. Ferraro, H. I. Krebs, and N. Hogan, Robotics in the rehabilitation treatment of patients with stroke, vol. 4, pp. 270–276, 2002.

    Google Scholar 

  9. H. I. Krebs, M. Ferraro, S. P. Buerger, M. J. Newbery, A. Makiyama, M. Sandmann, D. Lynch, B. T. Volpe, and N. Hogan, Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus, vol. 1, pp. 5, 2004.

    Google Scholar 

  10. J. E. Deutsch, J. Latonio, G. C. Burdea, and R. Boian, Post-stroke rehabilitation with the Rutgers Ankle system: a case study, Presence, vol. 10, pp. 416–430, 2001.

    Article  Google Scholar 

  11. T. Keller, M. R. Popovic, I. P. Pappas, and P. Y. Muller, Transcutaneous functional electrical stimulator “Compex Motion”, vol. 26, pp. 219–223, 2002.

    Google Scholar 

  12. M. R. Popovic and T. Keller, Compex Motion: Neuroprosthesis for grasping applications, in Enabling Technologies: Body Image and Body Function M. MacLachlan and P. Gallagher, Eds.: Elsevier Science Ltd., 2004, pp. 197–216.

    Google Scholar 

  13. L. Fadiga and L. Craighero, Electrophysiology of action representation, vol. 21, pp. 157–169, 2004.

    Google Scholar 

  14. G. Rizzolatti, R. Camarda, L. Fogassi, M. Gentilucci, G. Luppino, and M. Matelli, Functional organization of inferior area 6 in the macaque monkey II. Area F5 and the control of distal movements, Experimental Brain Research, vol. 71, pp. 491–507, 1988.

    Article  Google Scholar 

  15. G. Buccino, F. Binkofski, G. R. Fink, L. Fadiga, L. Fogassi, V. Gallese, R. J. Seitz, K. Zilles, G. Rizzolatti, and H.-J. Freund, Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study, European Journal of Neuroscience, vol. 13, pp. 400–404, 2001.

    Article  Google Scholar 

  16. G. Buccino, F. Binkofski, and L. Riggio, The mirror neuron system and action recognition, Brain and Language, vol. 89, pp. 370–376, 2004.

    Article  Google Scholar 

  17. F. Binkofski, K. Amunts, K. M. Stephan, S. Posse, T. Schormann, H.-J. Freund, K. Zilles, and R. J. Seitz, Broca’s region subserves imagery of motion: A combined cytoarchitectonic and fMRI study, Human Brain Mapping, vol. 11, pp. 273–285, 2000.

    Article  Google Scholar 

  18. K. Stefan, L. G. Cohen, J. Duque, R. Mazzocchio, P. Celnik, L. Sawaki, L. Ungerleider, and J. Classen, Formation of a Motor Memory by Action Observation, The Journal of Neuroscience, vol. 25, pp. 9339–9346, 2005.

    Article  Google Scholar 

  19. V. S. Ramachandran and W. Hirstein, The perception of phantom limbs, Brain, vol. 121, pp. 1603–1630, 1998.

    Article  Google Scholar 

  20. E. L. Altschuler, S. B. Wisdom, L. Stone, C. Foster, D. Galasko, D. M. E. Llewellyn, and V. S. Ramachandran, Rehabilitation of hemiparesis after stroke with a mirror, The Lancet, vol. 353, pp. 2035–2036, 1999.

    Article  Google Scholar 

  21. G. Nelles, W. Jentzen, M. Jueptner, S. Muller, and H. C. Diener, Arm training induced brain plasticity in stroke studied with serial positron emission tomography., Neuroimage, vol. 13, pp. 1146–1154, 2001.

    Article  Google Scholar 

  22. L. Fadiga, G. Buccino, L. Craighero, L. Fogassi, V. Gallese, and G. Pavesi, Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study, Neuropsychologia, vol. 37, pp. 147–158, 1999.

    Article  Google Scholar 

  23. S. H. Johnson-Frey, F. R. Maloof, R. Newman-Norhund, C. Farrer, S. Inati, and S. T. Grafton, Actions or Hand-Object Interactions? Human Inferior Frontal Cortex and Action Observation, Neuron, vol. 39, pp. 1053–1058, 2003.

    Article  Google Scholar 

  24. J. A. Stevens and M. E. Stoykov, Using motor imagery in the rehabilitation of hemiparesis, Arch. Phys. Med. Rehabil., vol. 84, pp. 1090–1092, 2003.

    Article  Google Scholar 

  25. S. R. Barreca, P. W. Stratford, C. L. Lambert, L. M. Masters, and D. L. Streiner, Test-Retest Reliability, Validity, and Sensitivity of the Chedoke Arm and Hand Activity Inventory: A New Measure of Upper-Limb Function for Survivors of Stroke, Arch Phys Med Rehabil, vol. 86, pp. 1616–1622, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kynan Eng .

Editor information

R. Magjarevic J. H. Nagel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Eng, K. et al. (2007). Cognitive Virtual-Reality Based Stroke Rehabilitation. In: Magjarevic, R., Nagel, J.H. (eds) World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36841-0_718

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36841-0_718

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36839-7

  • Online ISBN: 978-3-540-36841-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics