Skip to main content

Analysis of fMRI Data Using Classical and Bayesian Approaches: A Comparative Study

  • Conference paper
World Congress on Medical Physics and Biomedical Engineering 2006

Part of the book series: IFMBE Proceedings ((IFMBE,volume 14))

Abstract

Detection of active areas in a human brain by functional magnetic resonance imaging (fMRI) is a challenging problem in medical imaging. Moreover, determining the onset and end of activation signals can determine temporal relationships required for brain mapping. In this paper, a comparative study for detecting active areas in fMRI data using Bayesian and classical approaches was introduced. It has been found that using Bayesian model provides accurate and sensitive detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.S. Zadeh, D.J. Peck, D.O. Hearshen, and R.R. O’Neill, “Model-Independent Method for fMRI Analysis,” IEEE Trans. on Med. Imag., vol. 23, no. 3, pp. 285–296, Mar. 2004.

    Article  Google Scholar 

  2. A. Connelly, “Ictal imaging using functional magnetic resonance,” Magn. Reson. Imag., vol. 13, no. 8, pp. 1233–7, 1995.

    Article  MathSciNet  Google Scholar 

  3. A. Villringer and U. Dirnagl, “Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging,” Cerebrovasc. Brain Metabol. Rev., vol. 7, pp. 240–276, 1995.

    Google Scholar 

  4. S. Kim, W. Richter, and K. Ugurbil, “Limitations of temporal resolution in functional MRI,” Magn. Reson. Med., vol. 37, pp. 631–636, 1997.

    Article  Google Scholar 

  5. O. Henriksen, H. W. Larsson, P. Ring, and E. Rostrup, Acta Radiologica, vol. 34, pp. 101–103, 1993.

    Article  Google Scholar 

  6. O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H. Knutsson, “Detection of neural activity in functional MRI using canonical correlation analysis,” Magn. Reson. Med., vol. 45, pp. 323–330, 2001.

    Article  Google Scholar 

  7. K. Friston, P. Jezzard, and R. Turner, “Analysis of functional MRI time series,” Human Brain Mapping, vol. 1, pp. 153–171, 1994.

    Article  Google Scholar 

  8. E. Bullmore, M. Brammer, S. Williams, S. Rabe-Hesketh, N. Janot, et al, “Statistical methods of estimation and inference for functional MRI analysis,” Magn. Reson. Med., vol. 35, pp. 261–277, 1996.

    Article  Google Scholar 

  9. U.E. Ruttimann, M. Unser, R.R. Rawlings, D. Rio, N.F. Ramsey, et al, “Statistical analysis of functional MRI data in the wavelet domain,” IEEE Trans. Med. Imag., vol. 17, pp. 142–154, Apr. 1999.

    Article  Google Scholar 

  10. L.R. Frank, R.B. Buxton, and E.C. Wong, “Probabilistic analysis of functional magnetic resonance imaging data,” Magn. Reson. Med., vol. 39, pp. 132–148, 1998.

    Article  Google Scholar 

  11. B. Ardekani, J. Kershaw, K. Kashikura, and I. Kanno, “Activation detection in fMRI using subspace modeling and maximum likelihood estimation,” IEEE Trans. Med. Imag., vol. 18, pp. 101–114, Feb. 1999.

    Article  Google Scholar 

  12. M.J. Fadili, S. Ruan, D. Bloyet, and B. Mazoyer, “Unsupervised fuzzy clustering analysis of fMRI series,” Proc. 20th Annu. Int. Conf. IEEE-EMBS, vol. 20, no. 2, pp. 696–699, 1998.

    Google Scholar 

  13. R. Baumgartner, L. Ryner, W. Richter, R. Summers, M. Jarmasz, and R. Somorjai, “Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis,” Magn. Reson. Med., vol. 18, pp. 89–94, 2000.

    Google Scholar 

  14. J. Stone, J. Porrill, N. Porter, and I. Wilkinson, “Spatiotemporal independent component analysis of event-related fMRI data using Skewed probability density functions,” NeuroImage, vol. 15, pp. 407–421, 2002.

    Article  Google Scholar 

  15. S. Ngan and X. Hu, “Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity,” Magn. Reson. Med., vol. 41, pp. 939–946, 1999.

    Article  Google Scholar 

  16. The department of imaging neuroscience at the Institute of Neurology at University College of London; available http://www.fil.ion.ucl.ac.uk/spm/data#fMRI_MoAEpilot.

    Google Scholar 

  17. K. Friston, P. Jezzard, and R. Turner, “Analysis of functional MRI timeseries,” Human Brain Mapping, vol. 1, pp. 153–171, 1994.

    Article  Google Scholar 

  18. J. Ashburner, K. Friston, W. Penny, “Human Brain Function”, 2nd edition 2002.

    Google Scholar 

  19. K. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, et al, “Classical and Bayesian inference in neuroimaging: Theory,” NeuroImage, vol.16, pp. 465–483, 2002.

    Article  Google Scholar 

  20. V. Calhoun, M. Stevens, G. Pearlson, and K. Kiehl, “fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms,” NeuroImage, Vol. 22, pp. 252–257, 2004.

    Article  Google Scholar 

  21. K.J. Friston, K.J. Worsley, R.S., Frackowiak, J.C., Mazziotta, and A.C. Evans, “Assessing the significance of focal activations using their spatial extent,” Hum. Brain Mapp. Vol. 1, pp. 214–220, 1994.

    Article  Google Scholar 

  22. P.A. Bandettini, A. Jesmanowicz, E.C. Wong, and J.S. Hyde, “Processing strategies for time course data sets in functional MRI of the human brain,” Mag. Res. Med. vol. 30, pp. 161–173, 1993.

    Article  Google Scholar 

  23. R. Bracewell, The Fourier transform and its applications. McGraw-Hill International Editions, 2nd edition, 1986.

    Google Scholar 

  24. P. Purdon and R. Weisskoff, “Effects of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI,” Human Brain Mapping, vol. 6, pp. 239–249, 1998.

    Article  Google Scholar 

  25. K. Worsley and K. Friston, “Analysis of fMRI time series revised-again,” Neuroimage, vol. 2, pp. 173–181, 1995.

    Article  Google Scholar 

  26. R.V. Alexandre and W.O. Gary, “Bayesian Image Analysis of fMRI Brain Data Sets,” School of Statistics, University of Minnesota, March 2000.

    Google Scholar 

  27. W. Mark, J. Mark, J. Brady, and M. Stephen, “Fully Bayesian Spatio-Temporal Modeling of FMRI Data,” IEEE, Trans. on Med. Imaging, vol. 23, no. 2, pp. 213–231, Feb. 2004.

    Article  Google Scholar 

  28. G. Newell, and E. Montroll, “On the Theory of the Ising Model of Ferromagnetism,” Reviews of Modern Physics, vol.25, pp. 353–389, 1953.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Azim Mohamed .

Editor information

R. Magjarevic J. H. Nagel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Mohamed, M.A., Abou-Chadi, F., Ouda, B.K. (2007). Analysis of fMRI Data Using Classical and Bayesian Approaches: A Comparative Study. In: Magjarevic, R., Nagel, J.H. (eds) World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36841-0_221

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36841-0_221

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36839-7

  • Online ISBN: 978-3-540-36841-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics