Skip to main content

Large Margin Principles for Feature Selection

  • Chapter
Feature Extraction

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 207))

Abstract

In this paper we introduce a margin based feature selection criterion and apply it to measure the quality of sets of features. Using margins we devise novel selection algorithms for multi-class categorization problems and provide theoretical generalization bound. We also study the well known Relief algorithm and show that it resembles a gradient ascent over our margin criterion. We report promising results on various datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Bartlett. The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525–536, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

    Google Scholar 

  • B. Boser, I. Guyon, and V. Vapnik. Optimal margin classifiers. In In Fifth Annual Workshop on Computational Learning Theory, pages 144–152, 1992.

    Google Scholar 

  • T.M. Cover and P.E. Hart. Nearest neighbor pattern classifier. IEEE Transactions on Information Theory, 13:21–27, 1967.

    Article  MATH  Google Scholar 

  • K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis of the lvq algorithm. In Proc. 17’th Conference on Neural Information Processing Systems (NIPS), 2002.

    Google Scholar 

  • E. Fix and j. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency properties. Technical Report 4, USAF school of Aviation Medicine, 1951.

    Google Scholar 

  • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learnig Research, pages 1157–1182, Mar 2003.

    Google Scholar 

  • I. Guyon and S. Gunn. Nips feature selection challenge. http://www.nipsfsc.ecs.soton.ac.uk/, 2003.

  • K. Kira and L. Rendell. A practical approach to feature selection. In Proc. 9th International Workshop on Machine Learning, pages 249–256, 1992.

    Google Scholar 

  • T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1995.

    Google Scholar 

  • I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In Proc. European Conference on Machine Learning, pages 171–182, 1994. URL citeseer.nj.nec.com/kononenko94estimating.html.

    Google Scholar 

  • A.M. Martinez and R. Benavente. The ar face database. Technical report, CVC Tech. Rep. #24, 1998. http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html.

  • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 1998.

    Google Scholar 

  • J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE transactions on Information Theory, 44(5):1926–1940, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In Proc. 15th Conference on Neural Information Processing Systems (NIPS), pages 668–674, 2000. URL citeseer.nj.nec.com/article/weston01feature.html.

    Google Scholar 

  • J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider, 2004. http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilad-Bachrach, R., Navot, A., Tishby, N. (2006). Large Margin Principles for Feature Selection. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds) Feature Extraction. Studies in Fuzziness and Soft Computing, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35488-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35487-1

  • Online ISBN: 978-3-540-35488-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics