Skip to main content

Introduction

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 33))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  2. Buntine, W. L. (1991). Theory refinement of Bayesian networks. Proceedings of the Uncertainty in Artificial Intelligence (UAI-91), pages 52-60

    Google Scholar 

  3. Inza, I., Larrañaga, P., Etxeberria, R., and Sierra, B. (2000). Feature subset selection by Bayesian network-based optimization. Artificial Intelligence, 123(1-2):157-184

    Article  MATH  Google Scholar 

  4. Jordan, M. I., editor (1999). Learning in Graphical Models. MIT, Cambridge, MA

    Google Scholar 

  5. Larrañaga, P. and Lozano, J. A., editors (2002). Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer, Boston, MA

    Google Scholar 

  6. Li, J. and Aickelin, U. (2003). A Bayesian optimization algorithm for the nurse scheduling problem. Proceedings of the IEEE Congress on Evolutionary Computation 2003 (CEC-2003), pages 2149-2156

    Google Scholar 

  7. Mühlenbein, H. and Mahnig, T. (1999). FDA - A scalable evolution-ary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(4):353-376

    Article  Google Scholar 

  8. Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, pages 178-187

    Google Scholar 

  9. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  10. Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm: To-ward a new generation of evolutionary algorithms. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Pelikan, M., Goldberg, D. E., and Lobo, F. (1999). A survey of optimization by building and using probabilistic models. IlliGAL Report No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  12. Pelikan, M., Sastry, K., and Goldberg, D. E. (2002). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 31(3):221-258

    Article  MATH  MathSciNet  Google Scholar 

  13. Rothlauf, F., Goldberg, D. E., and Heinzl, A. (2000). Bad codings and the utility of well-designed genetic algorithms. IlliGAL Report No. 200007, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  14. Santarelli, S., Goldberg, D. E., and Yu, T.-L. (2004). Optimization of a constrained feed network for an antenna array using simple and compe-tent genetic algorithm techniques. Proceedings of the Workshop Military and Security Application of Evolutionary Computation (MSAEC-2004)

    Google Scholar 

  15. Sastry, K. (2001). Efficient atomic cluster optimization using a hybrid extended compact genetic algorithm with seeded population. IlliGAL Report No. 2001018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  16. Simon, H. A. (1968). The Sciences of the Artificial. The MIT, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelikan, M., Sastry, K., Cantú-Paz, E. (2006). Introduction. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34954-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34953-2

  • Online ISBN: 978-3-540-34954-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics