Skip to main content

Swarm Intelligence: Theoretical Proof That Empirical Techniques are Optimal

  • Chapter
Stigmergic Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 31))

  • 504 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham A, Grosan C, Ramos V, Eds. (2006) Swarm Intelligence and Data Mining. Springer-Verlag, Berlin - Heidelberg

    Google Scholar 

  2. Abraham A, Grosan C, Ramos V, Eds. (2006) Stigmergic Optimization. Springer-Verlag, Berlin - Heidelberg

    MATH  Google Scholar 

  3. Aczel J (1966) Lectures on functional equations and their applications. Academic Press, New York, London

    MATH  Google Scholar 

  4. Adjiman CS, Androulakis I, Floudas CA (1998) A global optimization method, αBB, for general twice-differentiable constrained NLP II. Implementation and computational results. Computers and Chemical Engineering, 22:1159-1179

    Article  Google Scholar 

  5. Adjiman CS, Dallwig S, Androulakis I, Floudas CA (1998) A global optimization method, αBB, for general twice-differentiable constrained NLP I. Theoretical aspects. Computers and Chemical Engineering, 22:1137-1158

    Article  Google Scholar 

  6. Akrotirianakis IG, Floudas CA (2004) Computational experience with a new class of convex underestimators: box-constrained NLP problems. Journal of Global Optimization, 29:249-264

    Article  MATH  MathSciNet  Google Scholar 

  7. Akrotirianakis IG, Floudas CA (2006) A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. Journal of Global Optimization, to appear.

    Google Scholar 

  8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  9. Bonabeau E, Sobkowski A, Theraulaz G, Jean-Louis Deneubourg J-L (1997) Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects. In: Lundh D, Olsson B (eds), Bio Computation and Emegent Computing, World Scientific, Singapore, 36-45

    Google Scholar 

  10. Bonabeau E, Théraulaz G, Denebourg J-L (1996) Quantitative study of the fixed response threshold model for the regulation of division of labour in insect societies. Proc. Roy. Soc. B 263:1565-1569

    Article  Google Scholar 

  11. Casado LG, García I (1998) New load balancing criterion for parallel interval global optimization algorithm, In: Proc. of the 16th IASTED International Conference, Garmisch-Partenkirchen, Germany, February 1998, 321-323

    Google Scholar 

  12. Casado LG, García I, Csendes T (2000) A new multisection technique in interval methods for global optimization. Computing, 65:263-269

    Article  MATH  MathSciNet  Google Scholar 

  13. Cicirello VA, Smith SF (2001) Ant colony control for autonomous decentralized shop floor routing. In: Proc. 5th Int’l Symposium on Autonomous Decentralized Systems ISADS’2001, IEEE Computer Society Press, March 2001.

    Google Scholar 

  14. Cicirello, VA, Smith SF (2001) Insect societies and manufacturing. In: Proc. of IJCAI’01 Workshop on AI and Manufacturing: New AI Paradigms and Manufacturing, August 2001.

    Google Scholar 

  15. Cicirello VA, Smith SF (2001) Wasp nests for self-configurable factories. In: Agents’2001, Proc. 5th Int’l Conference on Autonomous Agents, ACM Press, May-June 2001.

    Google Scholar 

  16. Cicirello VA, Smith SF (2001) Improved routing wasps for distributed factory control. In: Proc. of IJCAI’01 Workshop on AI and Manufacturing: New AI Paradigms and Manufacturing, August 2001.

    Google Scholar 

  17. Floudas CA(2000) Deterministic Global Optimization: Theory, Methods, and Applications. Kluwer, Dordrecht

    Google Scholar 

  18. Floudas CA, Kreinovich V (2006) Towards Optimal Techniques for Solving Global Optimization Problems: Symmetry-Based Approach. In: Torn A, Zilinskas, J (eds.), Models and Algorithms for Global Optimization, Springer, Dordrecht (to appear)

    Google Scholar 

  19. Garey M, Johnson, D (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  20. Horst R, Pardalos PM, eds. (1995) Handbook of Global Optimization, Kluwer, Dordrecht

    MATH  Google Scholar 

  21. Jaynes ET, Bretthorst GL, ed.(2003) Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  22. Kearfott RB (1996) Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  23. Kearfott RB, Kreinovich V (1998) Where to Bisect a Box? A Theoretical Explanation of the Experimental Results. In: Alefeld G, Trejo RA (eds.), Interval Computations and its Applications to Reasoning Under Uncertainty, Knowledge Representation, and Control Theory. Proceedings of MEXICON’98, Workshop on Interval Computations, 4th World Congress on Expert Systems, México City, México

    Google Scholar 

  24. Kennedy J, Eberhart R, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco, California

    Google Scholar 

  25. Kreinovich V, Csendes T (2001) Theoretical Justification of a Heuristic Subbox Selection Criterion. Central European Journal of Operations Research CEJOR, 9:255-265

    MATH  MathSciNet  Google Scholar 

  26. Kreinovich V, Starks SA, Mayer G (1997) On a Theoretical Justification of The Choice of Epsilon-Inflation in PASCAL-XSC. Reliable Computing, 3:437-452

    Article  MATH  MathSciNet  Google Scholar 

  27. Maranas CD, Floudas CA (1994) Global minimal potential energy conformations for small molecules. Journal of Global Optimization, 4:135-170

    Article  MATH  MathSciNet  Google Scholar 

  28. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin

    MATH  Google Scholar 

  29. Nguyen HT, Kreinovich V (1997) Applications of continuous mathematics in computer science. Kluwer, Dordrecht

    Google Scholar 

  30. Pinter JD (1996) Global Optimization in Action. Kluwer, Dordrecht

    MATH  Google Scholar 

  31. Ramos V, Merelo JJ (2002) Self-Organized Stigmergic Document Maps: Environment as a Mechanism for Context Learning. In: Alba E, Herrera F, Merelo JJ, et al. (Eds.), Proc. of 1st Spanish Conference on Evolutionary and Bio-Inspired Algorithms AEB’02, Centro Univ. de Mèrida, Mérida, Spain, Feb. 6-8, 2002, pp. 284-293

    Google Scholar 

  32. Ramos V, Muge F, Pina P (2002) Self-Organized Data and Image Retrieval as a Consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies. In: Ruiz-del-Solar A, Abraham A, Köppen M (Eds.), Frontiers in Artificial Intelligence and Applications, Soft Computing Systems - Design, Management and Applications, 2nd Int. Conf. on Hybrid Intelligent Systems, Santiago, Chile, Dec. 2002, IOS Press, 87:500-509

    Google Scholar 

  33. Ratz D (1992) Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. Ph.D. dissertation, Universität Karlsruhe

    Google Scholar 

  34. Ratz D (1994) Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimization Method. Computing, 53:337-354

    Article  MATH  MathSciNet  Google Scholar 

  35. Rump SM (1980) Kleine Fehlerschranken bei Matrixproblemen, Ph.D. dissertation, Universität Karlsruhe

    Google Scholar 

  36. Rump SM (1992) On the solution of interval linear systems. Computing, 47:337-353

    Article  MATH  MathSciNet  Google Scholar 

  37. Rump SM (1998) A Note on Epsilon-Inflation. Reliable Computing, 4(4):371-375

    Article  MATH  MathSciNet  Google Scholar 

  38. Tawarmalani M, Sahinidis NV (2002) Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, Dordrecht

    MATH  Google Scholar 

  39. Theraulaz G, Bonabeau E, Deneubourg JL (1998) Reponse threshold reinforcement and division of labor in insect societies, Proceeeings of the Royal Society of London B 263 (1393):327-335

    Article  Google Scholar 

  40. Vapnik VN (2000) The Nature of Statistical Learning Theory. Springer-Verlag, New York

    MATH  Google Scholar 

  41. Vavasis SA (1991) Nonlinear Optimization: Complexity Issues. Oxford University Press, New York

    MATH  Google Scholar 

  42. Wadsworth HM (ed) (1990) Handbook of statistical methods for engineers and scientists. McGraw-Hill Publishing Co., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Dmitri, I., Scott, S.A., Vladik, K., Stephen, S.F. (2006). Swarm Intelligence: Theoretical Proof That Empirical Techniques are Optimal. In: Stigmergic Optimization. Studies in Computational Intelligence, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34690-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34690-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34689-0

  • Online ISBN: 978-3-540-34690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics