Skip to main content
  • 6217 Accesses

Abstract

The central auditory system processes information from the organ of Corti in the cochlea. The perilymphatic space of the cochlea consists of the scala vestibuli and the scala tympani, which are continuous at the apex (the helicotrema) of the cochlea. The membranous ductus cochlearis is situated between the two scalae and contains the endolymph. The organ of Corti is located on the basilar membrane, which separates the ductus cochlearis from the scala tympani. Reissner’s membrane forms the separation of the ductus from the scala vestibuli. The piston-like footplate of the stapes, the final link in the chain of auditory ossicles, sets up a wave in the scala vestibuli and tympani, and introduces a travelling wave along the basilar membrane. The basilar membrane acts as a frequency analyzer. Short waves, created by the higher frequencies, maximally displace the the narrow basal part of the membrane; long waves, created by the lower frequencies, maximally displace the broader apical segments (Fig. 17.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JC (1983) Cytology of periolivary cells and the organization of their projection in the cat. J Comp Neurol 215:275–289

    Article  PubMed  CAS  Google Scholar 

  2. Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40

    Article  PubMed  CAS  Google Scholar 

  3. Alain C, Arnott SR, Hevenor S, Graham S, Grady CL (2001) “What” and “where” in the human auditory system. Proc Natl Acad Sci USA 98:12301–12306

    Article  PubMed  CAS  Google Scholar 

  4. Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194:649–662

    Article  PubMed  CAS  Google Scholar 

  5. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    Article  PubMed  CAS  Google Scholar 

  6. Binder JR, Frost JA, Hammeke TA, Rao SM, Cox RW (1996) Function of the left planum temporale in auditory and linguistic processing. Brain 119 (Pt 4):1239–1247

    Article  PubMed  Google Scholar 

  7. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    PubMed  CAS  Google Scholar 

  8. Brawer JA, Morest DK, Cohen-Kane E (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 153:251–300

    Article  Google Scholar 

  9. Brodai A (1981) Neurological anatomy in relation to clinical medicine. Oxford Univ Press, New York

    Google Scholar 

  10. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  11. Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766

    Article  PubMed  CAS  Google Scholar 

  12. Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392

    Article  PubMed  CAS  Google Scholar 

  13. Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    PubMed  CAS  Google Scholar 

  14. Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287:247–259

    Article  PubMed  CAS  Google Scholar 

  15. Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262:215–226

    Article  PubMed  CAS  Google Scholar 

  16. Dallos P (1997) Outer hair cells: the inside story. Ann Otol Rhinol Laryngol Suppl 168:16–22

    PubMed  CAS  Google Scholar 

  17. Dalman AJE, Eling P (2000) Wernicke’s aphasia. In: Koehler PJ, Bruyn GW, Pearce JMS (eds) Neurological eponyms. Oxford Univ Press: 244–249

    Google Scholar 

  18. DeVenecia RL, Liberman MC, Guinan JJ Jr, Brown MC (2005) Medial olivocochler reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487:345–360

    Article  PubMed  Google Scholar 

  19. Doron NN, Ledoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 412:383–409

    Article  PubMed  CAS  Google Scholar 

  20. Doucet JR, Ross AT, Gillespie MB, Ryugo DK (1999) Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. J Comp Neurol 408:515–531

    Article  PubMed  CAS  Google Scholar 

  21. FitzPatrick KA, Imig TJ (1978) Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J Comp Neurol 177:537–555

    Article  Google Scholar 

  22. Galaburda AM (1993) The planum temporale. Arch Neurol 50:457

    PubMed  CAS  Google Scholar 

  23. Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    Article  PubMed  CAS  Google Scholar 

  24. Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184

    Article  PubMed  CAS  Google Scholar 

  25. Galaburda AM, Sanides F, Geschwind N (1978) Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol 35:812–817

    PubMed  CAS  Google Scholar 

  26. Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetrics in the brain. Science 199:852–862

    Article  PubMed  CAS  Google Scholar 

  27. Garcia Del Cano G, Gerrikagoitia I, Alonso-Cabria A, Martinez-Millan L (2006) Organization and origin of the connection from the inferior to the superior colliculi in the rat. J Comp Neurol 499: 716–731

    Article  PubMed  Google Scholar 

  28. Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta Otolaryngol Suppl 295:1–33

    PubMed  CAS  Google Scholar 

  29. Glendenning KK, Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. J Neurosci 3:1521–1537

    PubMed  CAS  Google Scholar 

  30. Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Buchel C, Turner R, Frackowiak RS (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79

    Article  PubMed  CAS  Google Scholar 

  31. Groff A, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–3200

    Article  PubMed  Google Scholar 

  32. Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221:358–370

    Article  PubMed  Google Scholar 

  33. Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    Article  PubMed  CAS  Google Scholar 

  34. Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    Article  PubMed  CAS  Google Scholar 

  35. Held H (1893) Die centrale Gehörgeleitung. Arch Anat Physiol Anat Abth 201–248

    Google Scholar 

  36. Henkel CK, Spangler KM (1983) Organization of the efferent projections of the medial superior olivary nucleus in the cat as revealed by HRP and autoradiographic tracing methods. J Comp Neurol 221:416–428

    Article  PubMed  CAS  Google Scholar 

  37. Henkel CK, Shneiderman A (1988) Nucleus sagulum: projections of a lateral tegmental area to the inferior colliculus in the cat. J Comp Neurol 271: 577–588

    Article  PubMed  CAS  Google Scholar 

  38. Herbert H, Aschoff AOJ (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    Article  PubMed  CAS  Google Scholar 

  39. Hodges JR, Spatt J, Patterson K (1999) “What” and “how”: evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. Proc Natl Acad Sci USA 96: 9444–9448

    Article  PubMed  CAS  Google Scholar 

  40. Horvath M, Kraus KS, Illing RB (2000) Olivocochlear neurons sending axon collaterals into the ventral cochlear nucleus of the rat. J Comp Neurol 422:95–105

    Article  PubMed  CAS  Google Scholar 

  41. Huffman RF, Henson OW (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Brain Res Rev 15:295–323

    Article  PubMed  CAS  Google Scholar 

  42. Hurd LB, Hutson KA, Morest DK (1999) Cochlear nerve projections to the small cell shell of the cochlear nucleus: the neuroanatomy of extremely thin sensory axons. Synapse 33:83–117

    Article  PubMed  CAS  Google Scholar 

  43. Joseph MP, Guinan JJ, Fullerton BC, Norris BE, Kiang NY (1985) Number and distribution of stapedius motoneurons in cats. J Comp Neurol 232:43–54

    Article  PubMed  CAS  Google Scholar 

  44. Kaas JH, Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol 3:73–85

    Article  PubMed  CAS  Google Scholar 

  45. Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Nat Acad Sci USA 97:11793–11799

    Article  PubMed  CAS  Google Scholar 

  46. Kandier K, Herbert H (1991) Auditory projections from the cochlear nucleus to pontine and mesencephalic reticular nuclei in the rat. Brain Res 562:230–242

    Article  Google Scholar 

  47. Keller JT, Saunders MC, Ongkiko CM, Johnson J, Frank E, Van Loveren H, Tew JM (1983) Identification of motoneurons innervating the tensor tympani and tensor veli palatini muscles in the cat. Brain Res 270:209–215

    Article  PubMed  CAS  Google Scholar 

  48. Kemp DT, Ryan S (1991) Otoacoustic emission tests in neonatal screening programmes. Acta Otolaryngol Suppl 482:73–84

    PubMed  CAS  Google Scholar 

  49. Kirk EC, Smith DW (2003) Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. J Assoc Res Otolaryngol 4:445–465

    Article  Google Scholar 

  50. Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycineand GABA-like immun ore activity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 186:443–465

    CAS  Google Scholar 

  51. Kudo M (1981) Projections of the nuclei of the lateral lemniscus in the cat: an autoradiographic study. Brain Res 221:57–69

    Article  PubMed  CAS  Google Scholar 

  52. Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816

    Article  PubMed  CAS  Google Scholar 

  53. Malmierca MM, Merchán MA (2004) Auditory system. In: Paxinos G (ed) The rat nervous system. Elsevier, Amsterdam, pp 997–1082

    Google Scholar 

  54. Malmierca MS, LeBeau FE, Rees A (1996) The topographical organization of descending projections from the central nucleus of the inferior colliculus in guinea pig. Hear Res 93:167–180

    Article  PubMed  CAS  Google Scholar 

  55. Malmierca MS, Merchán MA, Henkel CK, Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J Neurosci 22:10891–10897

    PubMed  CAS  Google Scholar 

  56. Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 332:1–27

    Article  Google Scholar 

  57. Malmierca MS, Leergaard TB, Bajo VM, Bjaalie JG, Merchán MA (1998) Anatomic evidence of a threedimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci 18:10603–10618

    PubMed  CAS  Google Scholar 

  58. Merchán MA, Berbel P (1996) Anatomy of the ventral nucleus of the lateral lemniscus in rats: a nucleus with a concentric laminar organization. J Comp Neurol 372:245–263

    Article  PubMed  Google Scholar 

  59. Merchán MA, Saldana E, Plaza I (1994) Dorsal nucleus of the lateral lemniscus in the rat: concentric organization and tonotopic projection to the inferior colliculus. J Comp Neurol 342:259–278

    Article  PubMed  Google Scholar 

  60. Mizuno N, Nomura S, Konishi A, Uemura-Sumi M, Takahashi O, Yasui Y, Takada M, Matsushima R (1982) Localization of motoneurons innervating the tensor tympani muscles: an horseradish peroxidase study in the guinea pig and cat. Neurosci Lett 31:205–208

    Article  PubMed  CAS  Google Scholar 

  61. Moore JK (1980) The primate cochlear nuclei: loss of lamination as a phylogenetic process. J Comp Neurol 193:609–629

    Article  PubMed  CAS  Google Scholar 

  62. Moore JK (1987) The human auditory brain stem: a comparative view. Hear Res 29:1–32

    Article  PubMed  CAS  Google Scholar 

  63. Moore JK (2000) Organization of the human superior olivary complex. Microsc Res Tech 51:403–412

    Article  PubMed  CAS  Google Scholar 

  64. Moore RY, Goldberg JM (1966) Projections of the inferior colliculus in the monkey. Exp Neurol 14:429–438

    Article  PubMed  CAS  Google Scholar 

  65. Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    Article  PubMed  CAS  Google Scholar 

  66. Moore JK, Linthicum JR (2004) Auditory system. In: Paxinos G, Mai J (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1241–1279

    Google Scholar 

  67. Morest DK (1965) The laminar structure of the medial geniculate body in the cat. J Anat 99:143–160

    PubMed  CAS  Google Scholar 

  68. Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236

    Article  PubMed  CAS  Google Scholar 

  69. Mulders WH, Robertson D (2002) Inputs from the cochlea and the inferior colliculus converge on olivocochlear neurons. Hear Res 167:206–213

    Article  PubMed  CAS  Google Scholar 

  70. Nobili R, Mammano F, Ashmore J (1998) How well do we understand the cochlea? Trends Neurosci 21:159–167

    Article  PubMed  CAS  Google Scholar 

  71. Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110

    Article  PubMed  CAS  Google Scholar 

  72. Ohnishi TM, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E (2001) Functional anatomy of musical perception in musicians. Cereb Cortex 11:754–760

    Article  PubMed  CAS  Google Scholar 

  73. Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424

    Article  PubMed  CAS  Google Scholar 

  74. Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264:24–46

    Article  PubMed  CAS  Google Scholar 

  75. Oliver DL (2000) Ascending efferent projections of the superior olivary complex. Microsc Res Tech 51:355–363

    Article  PubMed  CAS  Google Scholar 

  76. Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    Article  PubMed  CAS  Google Scholar 

  77. Oliver DL, Shneiderman A (1989) An EM study of the dorsal nucleus of the lateral lemniscus: inhibitory, commissural, synaptic connections between ascending auditory pathways. J Neurosci 9:967–982

    PubMed  CAS  Google Scholar 

  78. Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303:75–100

    Article  PubMed  CAS  Google Scholar 

  79. Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    Article  PubMed  CAS  Google Scholar 

  80. Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144:355–372

    Article  PubMed  CAS  Google Scholar 

  81. Ostapoff EM, Morest DK, Parham K (1999) Spatial organization of the reciprocal connections between the cat dorsal and anteroventral cochlear nuclei. Hear Res 130:75–93

    Article  PubMed  CAS  Google Scholar 

  82. Paloff AM, Usonoff KG, Hinova-Palova DV (1982) Ultrastructure of Golgi-impregnated and gold-toned neurons in the central nucleus of the inferior colliculus of the cat. J Hirnforsch 33:361–407

    Google Scholar 

  83. Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392:811–814

    Article  PubMed  CAS  Google Scholar 

  84. Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Article  PubMed  CAS  Google Scholar 

  85. Probst M (1902) Experimentelle Untersuchungen Über die Anatomie und Physiologie der Leitungsbahnen des Gehirnstammes. Arch Anat Physiol Anat Abth Suppl 147–254

    Google Scholar 

  86. Rauschecker JP (1998) Parallel processing in the auditory cortex of primates. Audiol Neurootol 3:86–103

    Article  PubMed  CAS  Google Scholar 

  87. Rauschecker JP (1998) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521

    Article  PubMed  CAS  Google Scholar 

  88. Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    Article  PubMed  CAS  Google Scholar 

  89. Romanski LM, Goldman-Rakic PS (2002) An auditory domain in primate prefrontal cortex. Nat Neurosci 5:15–16

    Article  PubMed  CAS  Google Scholar 

  90. Saint Marie RL, Shneiderman A, Stanforth DA (1997) Patterns of gamma-aminobutyric acid and glycine immunoreactivities reflect structural and functional differences of the cat lateral lemniscal nuclei. J Comp Neurol 389:264–276

    Article  PubMed  CAS  Google Scholar 

  91. Saint Marie RL, Benson CG, Ostapoff EM, Morest DK (1991) Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus. Hear Res 51:11–28

    Article  PubMed  CAS  Google Scholar 

  92. Saldãna E, Merchán MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol 319:417–437

    Article  PubMed  Google Scholar 

  93. Saldãna E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40

    Article  PubMed  Google Scholar 

  94. Saykin AJ, Johnson SC, Flashman LA, McAllister TW, Sparling M, Darcey TM, Moritz CH, Guerin SJ, Weaver J, Mamourian A (1999) Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain 122:1963–1971

    Article  PubMed  Google Scholar 

  95. Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267:699–701

    Article  PubMed  CAS  Google Scholar 

  96. Schlaug G, Jancke L, Huang Y, Staiger JF, Steinmetz H (1995) Increased corpus callosum size in musicians. Neuropsychologia 33:1047–1055

    Article  PubMed  CAS  Google Scholar 

  97. Schofield BR, Cant NB (1999) Descending auditory pathways: projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. J Comp Neurol 409:210–223

    Article  PubMed  CAS  Google Scholar 

  98. Scott KS, Blank CC, Rosen S, Wise RJS (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123:2400–2406

    Article  PubMed  Google Scholar 

  99. Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 143:25–38

    Article  Google Scholar 

  100. Sweet RA, Dorph-Petersen K-A, Lewis DA (2005) Mapping auditory core, latral belt and parabelt cortices in human superior temporal gyrus. J Comp Neurol 491:270–289

    Article  PubMed  Google Scholar 

  101. Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303:267–285

    Article  PubMed  CAS  Google Scholar 

  102. Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51:330–354

    Article  PubMed  CAS  Google Scholar 

  103. VanNoort J (1969) The structure and connections of the inferior colliculus. Van Gorcum, Assen

    Google Scholar 

  104. Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol (Berl) 185:1–16

    Article  CAS  Google Scholar 

  105. Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43

    Article  PubMed  CAS  Google Scholar 

  106. Vetter DE, Saldãna E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hear Res 70:173–186

    Article  PubMed  CAS  Google Scholar 

  107. Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474

    Article  PubMed  CAS  Google Scholar 

  108. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–181

    Article  PubMed  CAS  Google Scholar 

  109. Warr WB (1978) The olivocochlear bundle: its origins and terminations in the cat. In: Naunton RF, Fernandez C (eds) Evoked electrical activity in the auditory nervous system. Academic Press, New York, pp 43–63

    Google Scholar 

  110. Warr WB (1980) Efferent components of the auditory system. Ann Otol Rhinol Laryngol Suppl 89:114–120

    PubMed  CAS  Google Scholar 

  111. Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of corti: two separate systems. Brain Res 173:152–155

    Article  PubMed  CAS  Google Scholar 

  112. Warr WB, Beck JE (1996) Multiple projections from the ventral nucleus of the trapezoid body in the rat. Hear Res 93:83–101

    Article  PubMed  CAS  Google Scholar 

  113. Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111

    Article  PubMed  CAS  Google Scholar 

  114. Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706:97–102

    Article  PubMed  CAS  Google Scholar 

  115. Weedman DL, Ryugo DK (1996) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. J Comp Neurol 371:311–324

    Article  PubMed  CAS  Google Scholar 

  116. Wenthold RJ (1987) Evidence for a glycinergic pathway connecting the two cochlear nuclei: an immunocytochemical and retrograde transport study. Brain Res 415:183–187

    Article  PubMed  CAS  Google Scholar 

  117. Wernicke C (1874) Der aphasische Symptomencomplex; eine psychologische Srudie auf Anatomischer Basis. Cohn & Weigert, Breslau

    Google Scholar 

  118. Winer JA, Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3:2629–2651

    PubMed  CAS  Google Scholar 

  119. Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93:8005–8010

    Article  PubMed  CAS  Google Scholar 

  120. Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol400:147–174

    Article  PubMed  CAS  Google Scholar 

  121. Winer JA, Sally SL, Larue DT, Kelly JB (1999) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hear Res 130:42–61

    Article  PubMed  CAS  Google Scholar 

  122. Wise RJ, Scott SK, Blank SC, Mummery CJ, Murphy K, Warburton EA (2001) Separate neural subsystems within ‘Wernicke’s area’. Brain 124:83–95

    Article  PubMed  CAS  Google Scholar 

  123. Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    PubMed  CAS  Google Scholar 

  124. Zook JM, Casseday JH (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol 237:307–324

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Auditory System. In: The Human Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34686-9_18

Download citation

Publish with us

Policies and ethics