Skip to main content
  • 3806 Accesses

Abstract

In this chapter, after an outline of the general principles of operation of a quantum computer, we present several representative quantum algorithms for data processing and error correction. As we will see, these quantum algorithms can outperform their classical counterparts. The material here also serves to motivate the discussion in the next chapter pertaining to the physical implementations of quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Chapter 9

  1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52, 3457 (1995).

    Article  ADS  Google Scholar 

  2. D. Deutsch, Quantum theory, the Church-Turing principle, and the universal quantum computer, Proc. Roy. Soc. London 400, 97 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Steane, Quantum computing, Rep. Prog. Phys. 61, 117 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325(1997).

    Article  ADS  Google Scholar 

  5. P. W. Shor, Algorithms for quantum computation, discrete log and factorizing, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, 1994) p. 124; A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68, 733 (1996).

    Google Scholar 

  6. D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).

    Article  ADS  Google Scholar 

  7. S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).

    Google Scholar 

  9. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996); D. P. DiVincenzo and P. W. Shor, Fault-tolerant error correction with efficient quantum codes, Phys. Rev. Lett. 77, 3260 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Knill, R. Laflamme and W. H. Zurek, Resilient quantum computation, Science 279, 342 (1998).

    Article  ADS  Google Scholar 

  11. J. Preskill, Fault-tolerant quantum computation, in Introduction to Quantum Computation and Information, edited by H.-K. Lo, S. Popescu and T. Spiller (World Scientific, 2001), p. 213.

    Google Scholar 

  12. P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79, 3306 (1997); D. A. Lidar, I. L. Chuang and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Principles of Quantum Computation. In: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34572-5_9

Download citation

Publish with us

Policies and ethics