Skip to main content

Atom Interferometric Inertial Sensors for Space Applications

  • Chapter
Book cover Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

  • 1521 Accesses

The techniques of atom cooling combined with atom interferometry make possible the realisation of very sensitive and accurate inertial sensors like gyroscopes or accelerometers. Besides earth-based developments, the use of these techniques in space should provide extremely high sensitivity for research in fundamental physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.W. Chow, J. Gea-Banacloche, L.M. Pedrotti, V.E. Sanders, W. Schleich, and M.O. Scully, Rev. Mod. Phys., 72, 61 (1985).

    ADS  Google Scholar 

  2. J.F. Clauser, Physica B, 151, 262 (1988).

    Google Scholar 

  3. R. Colella, A.W. Overhauser, and S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975).

    ADS  Google Scholar 

  4. S.A. Werner, J.-L. Staudenmann, and R. Colella, Phys. Rev. Lett., 42, 1103 (1979).

    ADS  Google Scholar 

  5. Ch.J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, CH. Bréant, D. Bassi and G. Scoles, Phys. Rev. A, 30, 1836 (1984) and references therein.

    ADS  Google Scholar 

  6. F. Riehle, Th. Kisters, A. Witte, J. Helmcke and Ch.J. Bordé, Phys. Rev. Lett. 67, 177 (1991).

    ADS  Google Scholar 

  7. M. Kasevich and S. Chu, Appl. Phys., B 54, 321 (1992).

    ADS  Google Scholar 

  8. P.R. Berman (ed.), Atom Interferometry (Academic Press, 1997).

    Google Scholar 

  9. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).

    ADS  Google Scholar 

  10. T.L. Gustavson, et al. Class. Quantum Grav. 17, 1 (2000).

    Google Scholar 

  11. A. Peters, K.Y. Chung, B. Young, J. Hensley and S. Chu, Phil. Trans. R. Soc. Lond. A 355, 2223 (1997).

    ADS  Google Scholar 

  12. A. Peters, K. Y. Chung and S. Chu, Metrologia, 38, 25 (2001).

    ADS  Google Scholar 

  13. M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991).

    ADS  Google Scholar 

  14. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, and D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991).

    ADS  Google Scholar 

  15. M.J. Snadden et al., Phys. Rev. Lett. 81, 971 (1998).

    ADS  Google Scholar 

  16. Ch. J. Bordé. In P.G. Bergmann and V. de Sabbata (eds.). Advances in the Interplay between Quantum and Gravity Physics (Kluwer Academic Publisher, 2002) pp. 27-55.

    Google Scholar 

  17. M. Fattori et al., Phys. Lett. A 318, 184 (2003).

    ADS  Google Scholar 

  18. A. Wicht et al., Proceeding of the 6th Symposium on Frequency standards and metrology (ed. Patrick Gill, World Scientific, 2001) 193, Physica Scripta, 102, 82 (2002).

    Google Scholar 

  19. M.H. Anderson et al., Science 269, 198 (1995).

    ADS  Google Scholar 

  20. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).

    ADS  Google Scholar 

  21. C.C. Bradley, C.A. Sackett, and R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).

    ADS  Google Scholar 

  22. M.-O. Mewes et al., Phys. Rev. Lett. 78, 582 (1997).

    ADS  Google Scholar 

  23. B.P. Anderson and M.A. Kasevich, Science 282, 1686 (1998).

    ADS  Google Scholar 

  24. E.W. Hagley et al. Science 283, 1706 (1999).

    ADS  Google Scholar 

  25. I. Bloch, T.W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999).

    ADS  Google Scholar 

  26. G.E. Stedman et al., Phys. Rev. A 51, 4944 (1995).

    ADS  Google Scholar 

  27. G. E. Stedman, Rep. Prog. Phys. 60, 615 (1997).

    ADS  Google Scholar 

  28. P. Bouyer and M. Kasevich, Phys. Rev. A 56, R1083 (1997).

    ADS  Google Scholar 

  29. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D.E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002).

    ADS  Google Scholar 

  30. Hyper-Precision Cold Atom Interferometry in Space (HYPER), Assessment Study Report ESA-SCI(2000)10, European Space Agency (2000).

    Google Scholar 

  31. Ch.J. Bordé, Phys. Lett. A 140, 10 (1989).

    ADS  Google Scholar 

  32. D.M. Giltner, R.W. McGowan, and S.A. Lee, Phys. Rev. Lett. 75, 2638 (1995).

    ADS  Google Scholar 

  33. C. Cohen-Tannoudji, Cours au Collège de France (1992-1993).

    Google Scholar 

  34. Ch. Antoine and Ch. J. Bordé, Phys. Lett. A 306, 277 (2003); J. Opt. B: Quantum Semiclass. Opt. 5, S199 (2003).

    ADS  Google Scholar 

  35. P. Storey and C. Cohen-Tannoudji, J. Phys. II France 4, 1999 (1994).

    Google Scholar 

  36. M. Kasevich, E. Riis, S. Chu, and R. de Voe, Phys. Rev. Lett. 63, 612 (1989).

    ADS  Google Scholar 

  37. A. Clairon, C. Salomon, S. Guelatti, and W. Phillips, Europhys. Lett. 16, 165 (1991).

    ADS  Google Scholar 

  38. Y. Sortais, S. Bize, and M. Abgrall, Physica Scripta 2001, 50 (2001).

    Google Scholar 

  39. Ch.J. Bordé, Metrologia 39, 435-463 (2002).

    ADS  Google Scholar 

  40. A. Peters, K. Chung, and S. Chu, Metrologia 38, 25 (2001).

    ADS  Google Scholar 

  41. J.M. McGuirk et al., Phys. Rev. A 65, 033608 (2002).

    ADS  Google Scholar 

  42. K.U. Schreiber, A. Velikoseltsev, T. Klügel, M. Rothacher, G.E. Stedman and D.L. Wiltshire, J. Geophys. Res. 109 (B6): B06405 (2004).

    Google Scholar 

  43. T. Niebauer, G. Sasagawa, J. Faller, R. Hilt and F. Klopping, Metrologia, 32, 159-180 (1995).

    ADS  Google Scholar 

  44. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).

    ADS  Google Scholar 

  45. K. Moler, D.S. Weiss, M. Kasevich, and S. Chu, Phys. Rev. A 45, 342 (1992).

    ADS  Google Scholar 

  46. A. Miffre et al., to appear in App. Phys. B.

    Google Scholar 

  47. E.M. Rasel, M.K. Oberthaler, H. Batelaan, J. Schmiedmayer, and A. Zeilinger, Phys. Rev. Lett. 75, 2633 (1995).

    ADS  Google Scholar 

  48. Ch.J. Bordé, in M. Ducloy, E. Giacobino, G. Camy (eds.), Laser spectroscopy X (World scientific, Singapore 1992), p. 239.

    Google Scholar 

  49. J.M. McGuirk, M.J. Snadden, and M.A. Kasevich, Phys. Rev. Lett. 85, 4498 (2000)

    ADS  Google Scholar 

  50. Ch.J. Bordé, in J. Dalibard, J.-M. Raimond and J. Zinn-Justin (eds.) Fundamental Systems in Quantum Optics, Les Houches Lectures, Session LIII, 1990 (Elsevier Science Publishers, 1991).

    Google Scholar 

  51. Ch.J. Bordé, C.R. Acad. Sci. Paris, Série IV, 2, 509 (2001).

    Google Scholar 

  52. Ch.J. Bordé, Gen. Rel. Grav. 36, 475 (2004).

    MATH  ADS  Google Scholar 

  53. K. Bongs, R. Launais and M. Kasevich, to appear in App. Phys. B (2006).

    Google Scholar 

  54. Ch.J. Bordé, J.-C. Houard, and A. Karasiewicz, in C. Lämmerzahl, C.W.F. Everitt and F.W. Hehl (eds.): Gyros, Clocks and Interferometers: Testing Relativistic Gravity in Space (Springer, Berlin 2001), p. 403.

    Google Scholar 

  55. Ch.J. Bordé, A. Karasievicz, and Ph. Tourrenc, Int. J. Mod. Phys. D 3, 157 (1994).

    ADS  Google Scholar 

  56. S.N. Gupta, Proc. Phys. Soc. A 65, 161 (1952); Proc. Phys. Soc. A 65, 608 (1952).

    ADS  Google Scholar 

  57. R.P. Feynman, F.B. Morinigo, and W.G. Wagner, Feynman Lectures on Gravitation, edited by B. Hatfield (Addison-Wesley, Reading, Mass. 1995).

    Google Scholar 

  58. B.M. Barker, S.N. Gupta, and R.D. Haracz, Phys. Rev. 149, 1027 (1966), and references therein.

    ADS  Google Scholar 

  59. M. Sagnac, Compt. Rend. Acad. Sci., 157, 708 (1913).

    Google Scholar 

  60. P. Cladé et al., Europhys. Lett., 71 (5), pp. 730-736 (2005).

    ADS  Google Scholar 

  61. G. Modugno et al, arXiv:physics/0411097.

    Google Scholar 

  62. F. Impens, P. Bouyer and C. Bordé, to appear in App. Phys. B (2006).

    Google Scholar 

  63. 63.P. Cheinet et al., to appear in App. Phys. B (2006).

    Google Scholar 

  64. 64.http://www.onera.fr/actualites/2006-02.php

  65. B.P. Kibble, Atomic Masses and Fundamental Constants 5 ed J H Saunders and A H Wapstra (Plenum, New York) pp 541-51 (1976).

    Google Scholar 

  66. K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller and J.T.M. Walraven. Phys. Rev. A 58, 3891 (1998).

    ADS  Google Scholar 

  67. 67.P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Leduc, A. Landragin, submitted for publication to: IEEE Trans. on Instrum. Meas., physics/0510197.

    Google Scholar 

  68. B. Mashhoon and D. Theiss, Phys. Rev. D 49, 1542 (1982).

    MathSciNet  ADS  Google Scholar 

  69. B. Mashhoon, H. Paik, C. Will, Phys. Rev. D 39, 2285 (1989).

    Google Scholar 

  70. N. Sneeuw, R. Rummel, and J. Müller, Class. Quantum Grav. 58, A113 (1996).

    ADS  Google Scholar 

  71. 71.N. You et al., to appear in App. Phys. B (2006).

    Google Scholar 

  72. 72.A. Bertoldi et al., physics/0606126.

    Google Scholar 

  73. C. Jekeli, Geophysics 58, 508 (1993).

    ADS  Google Scholar 

  74. M. Moody and H. Paik, Phys. Rev. Lett. 70, 1195 (1993).

    ADS  Google Scholar 

  75. H. Cavendish, Philos. Trans. R. Soc. 88, 467 (1798).

    Google Scholar 

  76. G.T. Gillies, Rep. Prog. Phys. 60, 151 (1997).

    ADS  Google Scholar 

  77. 77 P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000). The values can also be found at http://www.physics.nist.gov/cuu/Constants/index.html.

  78. J.H. Gundlach, S.M. Merkowitz, Phys. Rev. Lett. 85 (2000) 2869; T.J. Quinn, C.C. Speake, S.J. Richman, R.S. Davis, A. Picard, Phys. Rev. Lett. 87 (2001) 111101.

    ADS  Google Scholar 

  79. J. Luo and Z.-K. Hu, Class. Quantum Grav. 17, 2351 (2000).

    MATH  ADS  Google Scholar 

  80. J.P. Schwarz, D.S. Robertson, T.M. Niebauer, J.E. Faller, Science 282, 2230 (1998).

    ADS  Google Scholar 

  81. B. Canuel et al., Phys. Rev. Lett. 97, 010402 (2006).

    ADS  Google Scholar 

  82. 82.T. Gustavson, PhD. Thesis, Stanford University (2000).

    Google Scholar 

  83. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S. Chang, A.N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999).

    ADS  Google Scholar 

  84. D. Wineland et al., Phys. Rev. A 46, 6797 (1992).

    ADS  Google Scholar 

  85. H. Marion, F. Pereira Dos Santos, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic, D. Calonico, J. Grünert, C. Mandache, P. Lemonde, G. Santarelli, Ph. Laurent, A. Clairon, and C. Salomon, Phys. Rev. Lett., 90, 150801 (2003).

    ADS  Google Scholar 

  86. H.J. Metcalf and P. Van Der Straten, Laser Cooling and Trapping (Springer Verlag, Berlin 1999).

    Google Scholar 

  87. 87.W. Ketterle, Scientific American.com, Ask the Experts, January 19, 2004. Scientific American, May 2004, p. 120.

    Google Scholar 

  88. J. Stenger et al., Phys. Rev. Lett. 82, 4569 (1999).

    ADS  Google Scholar 

  89. Y. Shin, M. Saba, T. Pasquini, W. Ketterle, D.E. Pritchard, and A.E. Leanhardt, Phys. Rev. Lett. 92, 050405 (2004).

    ADS  Google Scholar 

  90. 90.Y. Le Coq et al., to appear in App. Phys. B (2006).

    Google Scholar 

  91. C. Westbrook, P. Bouyer, and C. Michaut, La recherche 67, 40 (2003).

    Google Scholar 

  92. 92.When atoms behave as waves: Bose-Einstein condensation and the atom laser. in: Les Prix Nobel2001(The Nobel Foundation, Stockholm, 2002), pp. 118-154. reprinted in: ChemPhysChem 3, 736-753 (2002); Rev. Mod. Phys., 74, 1131-1151 (2002).

    Google Scholar 

  93. W. Hänsel, J. Reichel, P. Hommelhoff, and T.W. Hänsch, Phys. Rev. Lett. 86, 608 (2001).

    ADS  Google Scholar 

  94. T. Paul et al., Phys. Rev. A 72, 063621 (2005).

    ADS  Google Scholar 

  95. D. Clément et al., Phys. Rev. Lett. 95, 170409 (2005).

    ADS  Google Scholar 

  96. N.P. Robins, A.K. Morisson, J.J. Hope, and J.D. Close, Phys. Rev. A 72, 031606(R) (2005).

    ADS  Google Scholar 

  97. Y. Le Coq et al., Phys. Rev. Lett. 87, 17 (2001).

    Google Scholar 

  98. J.-F. Riou et al., Phys. Rev. Lett. 96, 070404 (2006).

    ADS  Google Scholar 

  99. F. Gerbier, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 86, 4729 (2001).

    ADS  Google Scholar 

  100. J. Fortàgh, A. Grossmann, C. Zimmermann, and T.W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).

    ADS  Google Scholar 

  101. J. Denschlag, D. Cassetari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).

    ADS  Google Scholar 

  102. D. Müller et al., Phys. Rev. Lett. 83, 5194 (1999).

    ADS  Google Scholar 

  103. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Comm. 166, 199 (1999).

    ADS  Google Scholar 

  104. N.H. Dekker et al., Phys. Rev. Lett. 84, 1124 (2000).

    ADS  Google Scholar 

  105. M. Key et al., Phys. Rev. Lett. 84, 1371 (2000).

    ADS  Google Scholar 

  106. B.K. Teo and G. Raithel, Phys. Rev. A 63, 031402 (2001).

    ADS  Google Scholar 

  107. P. Cren et al., Eur. Phys. J. D 20, 107 (2002).

    ADS  Google Scholar 

  108. K. Bongs et al., Phys. Rev. A 61, R31602 (2000).

    Google Scholar 

  109. A.E. Leanhardt et al., Phys. Rev. Lett. 89, 040401 (2002).

    ADS  Google Scholar 

  110. Z.T. Lu et al., Phys. Rev. Lett. 77, 3331 (1996).

    ADS  Google Scholar 

  111. D. Müller, E.A. Cornell, D.Z. Anderson, and E.R.I. Abraham, Phys. Rev. A 61, 033411 (2000).

    ADS  Google Scholar 

  112. T. Lahaye et al., Phys. Rev. Lett. 93, 093003 (2004).

    ADS  Google Scholar 

  113. E. Mandonnet et al., Eur. Phys. Journ. D 10, 9-18 (2000).

    ADS  Google Scholar 

  114. P.J. Martin, B.G. Oldaker, A.H. Hiklich, and D.E. Pritchard, Phys. Rev. Lett. 60, 515 (1988).

    ADS  Google Scholar 

  115. M. Kozuma et al., Phys. Rev. Lett. 82, 871 (1999).

    ADS  Google Scholar 

  116. S. Richard et al., condmat /0303137, Phys. Rev. Lett. 91, 010405 (2003).

    ADS  Google Scholar 

  117. M. Fauquembergue, J.-F. Riou, W. Guerin et al., Review of Sci. Inst. 76 (10), 103104 (2005).

    ADS  Google Scholar 

  118. J. Ye, S. Swartz, P. Jungner and J.L. Hall, Opt. Lett. 21, 1280 (1996).

    ADS  Google Scholar 

  119. S. Bize, Y. Sortais, M.S. Santos, C. Mandache, A. Clairon and C. Salomon, Europhys. Lett. 45, 558 (1999).

    ADS  Google Scholar 

  120. D. Hellweg et al., Phys. Rev. Lett. 91, 010406 (2003).

    ADS  Google Scholar 

  121. W.C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976); E. Tiesinga et al., Phys. Rev. A 46, R1167 (1992); P. Fedichev et al., Phys. Rev. Lett. 77, 2913 (1996).

    ADS  Google Scholar 

  122. M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. Hecker Denschlag, Phys. Rev. Lett. 93, 123001 (2004).

    ADS  Google Scholar 

  123. J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, and C.E. Wieman, Phys. Rev. Lett. 86, 4211 (2001).

    ADS  Google Scholar 

  124. A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle, Science 301, 1513 (2003).

    ADS  Google Scholar 

  125. S. Schneider et al., Phys. Rev. A 67, 023612 (2003).

    ADS  Google Scholar 

  126. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).

    ADS  Google Scholar 

  127. W. Hänsel, P. Hommelhoff, T.W. Hänsch, and J. Reichel, Nature (London) 413, 498 (2001).

    ADS  Google Scholar 

  128. M. Vengalattore, W. Rooijakkers, and M. Prentiss, Phys. Rev. A 66, 053403 (2002).

    ADS  Google Scholar 

  129. Y. Wang et al., Phys. Rev. Lett. 94, 090405 (2005).

    ADS  Google Scholar 

  130. S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, and W. Ketterle, Science 300, 1723 (2003); M.W. Zwierlein, Z. Hadzibabic, S. Gupta, and W. Ketterle, Phys. Rev. Lett. 91, 250404 (2004).

    ADS  Google Scholar 

  131. C.A. Regal, M. Greiner, and D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004).

    ADS  Google Scholar 

  132. G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno and G. Roati, Phys. Rev. Lett., 89 053202 (2002). F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, and G. Modugno, arXiv:cond-mat/0510630.

    ADS  Google Scholar 

  133. H. Schmaljohann et al., Appl. Phys. B 79, 1001 (2004).

    ADS  Google Scholar 

  134. R. Nyman et al., to appear in App. Phys. B. See also http://www.ice-space.fr.

  135. Natural-abundance dispensers are available from SAES Getters. We are interested in the isotopes 87 Rb and 40 K, which are, respectively, 28% and 0.012% naturally abundant. We will be investing in isotopically enriched 40 K (about 5%) dispensers in the near future.

    Google Scholar 

  136. V. Mahal, A. Arie, M.A. Arbore, M.M. Fejer, Opt. Lett. 21, 1217 (1996).

    ADS  Google Scholar 

  137. R.J. Thompson, M. Tu, D.C. Aveline, N. Lundblad, and L. Maleki, Opt. Exp. 11, 1709 (2003).

    Article  ADS  Google Scholar 

  138. J. Dingjan, B. Darquié, J. Beugnon, M.P.A. Jones, S. Bergamini, G. Messin, A. Browaeys, P. Grangier, App. Phys. B 82, 47 (2006).

    ADS  Google Scholar 

  139. C. Ospelkaus, S. Ospelkaus, K. Sengstock and K. Bongs, Phy. Rev. Lett. 96, 020401 (2006).

    ADS  Google Scholar 

  140. T. Kinoshita, T.R. Wenger and D.S. Weiss, Phys. Rev. A 71, 01162(R) (2005).

    Google Scholar 

  141. Ch.J. Bordé, Phil. Trans. Roy. Soc. 363, 2097 (2005) and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouyer, P., dos Santos, F.P., Landragin, A., Bordé, C.J. (2008). Atom Interferometric Inertial Sensors for Space Applications. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_15

Download citation

Publish with us

Policies and ethics