Skip to main content
  • 4494 Accesses

Abstract

Microelectromechanical systems (MEMS), as the name suggests, are predisposed to the use of electrons and mechanical movement. By adding optics to the palette of MEMS capabilities, the resultant micro-opto-electromechanical systems (MOEMS) or micro-opto-mechanical systems (MOMS) provide increased functionality while retaining the attractive features of MEMS technology. As the spectrum of potential applications can thus be substantially increased, research and development work on optical MEMS has recently seen considerable activity.[1,2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. See, for example, IEEE J. Selected Topics Quantum Electron. (special issue on MOEMS), vol. 5(1), Jan./Feb. 1999

    Google Scholar 

  2. M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing and actuation,” Opt. Eng., 36(5):1307–1318 (1997)

    Article  Google Scholar 

  3. H.R Herzig, ed., Micro-optics, Taylor & Francis, London (1997)

    Google Scholar 

  4. D.T. Neilson and R. Ryf, “Scalable micro-mechanical optical crossconnects,” Proceedings of the IEEE Laser and Electro-optical Society Meeting 2000, Rio Grande, Puerto Rico (2000), pp. 48–49

    Google Scholar 

  5. L.J. Hornbeck, “Digital Light Processing and MEMS: Reflecting the digital display needs of the networked society,” Micro-optical technologies for measurement, sensors and microsystems, SPIE Proc., 2783:2–13 (1996)

    Google Scholar 

  6. D. Leclrec, P. Brosson, F. Pommereau, R. Ngo, P. Doussiè, F. Mallécot, P. Gavignet, I. Wamsler, G. Laube, W. Hunziker, W. Vogt, and H. Melchior, “High performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique,” IEEE Photonics Technol. Lett., 7(5):476–478 (1995)

    Article  Google Scholar 

  7. O. Solgaard, M. Daneman, N.C. Tien, A. Friedberger, R.S. Muller, and K.Y. Lau, “Optoelectronic packaging using silicon surface-micromachined alignment mirrors,” IEEE Photonics Technol. Lett., 7(1):41–43 (1995)

    Article  Google Scholar 

  8. M. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE, 85(11):1833–1856 (1997)

    Article  Google Scholar 

  9. H. Zappe, Introduction to Semiconductor Integrated Optics, Artech House, Boston (1995)

    MATH  Google Scholar 

  10. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw Hill, New York (1989)

    Google Scholar 

  11. T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” IEEE J. Lightwave Technol, 16(7): 1249–1258 (1998)

    Article  Google Scholar 

  12. R.G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed., Springer, Berlin (1991)

    Google Scholar 

  13. J. Hecht, Understanding Fiber Optics, Prentice Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  14. J. Hecht, The Laser Guidebook, 2nd ed., McGraw-Hill, New York (1992)

    Google Scholar 

  15. B.A.E. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, New York (1991)

    Book  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics, 6th ed., Pergamon, Oxford, Pergamon (1980), sec. 1.5

    Google Scholar 

  17. H. Zappe, Introduction to Semiconductor Integrated Optics, Artech House, Boston (1995), sec. 7.3

    MATH  Google Scholar 

  18. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics (T. Tamir, ed.), Springer, Berlin (1988), sec. 2.5.7

    Google Scholar 

  19. S.G. Lipson, H. Lipson, and D.S. Tannhauser, Optical Physics, Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. B.A.E. Saleh and M.C. Teich, Fundamentals of Photonics, Wiley, New York (1991), sec. 3.2

    Book  Google Scholar 

  21. H. Nishihara, T. Suhara, and S. Ura, “Integrated-optic grating couplers,” Proceedings of the European Conference on Integrated Optics (ECIO), 1993, pp. 18–22

    Google Scholar 

  22. R.G. Hunsperger, Integrated Optics: Theory and Technology, 3rd ed., Springer, Berlin (1991), p. 97

    Google Scholar 

  23. E. Hecht, Optics, Addison-Wesley, Reading, MA (1987), sec. 5.6

    Google Scholar 

  24. T.L. Koch, U. Koren, G. Eisenstein, M.G. Young, M. Oron, C.R. Giles, and B.I. Miller, “Tapered waveguide InGaAs/InGaAsP multiple-quantum-well lasers,” IEEE Photonics Technol Lett., 2(2):88–90 (1990)

    Article  Google Scholar 

  25. R. Zengerle, H. Brückner, H. Olzhausen, and A. Kohl, “Low-loss fibre-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett., 28(7):631–632 (1992)

    Article  Google Scholar 

  26. R.G. Walker, “Simple and accurate loss measurement technique for semiconductor waveguides,” Electron. Lett., 21:581–583 (1985); erratum, Electron. Lett., 21:714 (1985)

    Article  Google Scholar 

  27. A. Yariv, Optical Electronics, 4th ed., Saunders, Philadelpia (1991), chap. 13.8

    Google Scholar 

  28. L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol., 13(4):615–627 (1995)

    Article  Google Scholar 

  29. D. Hofstetter, H. Zappe, and R. Dändliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” IEEE J. Lightwave Technol., 15(4:663–670 (1997)

    Article  Google Scholar 

  30. B. Maisenhölder, H. Zappe, M. Moser, P. Riel, R.E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett., 33(11):986–988 (1997)

    Article  Google Scholar 

  31. H. Porte, V. Gorel, S. Kiryenko, J.-P. Goedgebuhr, W. Daniau, and P. Blind, “Imbalanced Mach-Zehnder interferometer integrated in micromachined silicon substrate for pressure sensor,” IEEE J. Lightwave Technol, 17(2:229–233 (1999)

    Article  Google Scholar 

  32. R.W. Waynant and M.N. Ediger, Electro-optics Handbook, 2nd ed., McGraw-Hill, New York (2000)

    Google Scholar 

  33. H.C. Casey and M.B. Panish, Heterostructure Lasers, parts A & B, Academic Press, New York (1978)

    Google Scholar 

  34. M. Fukuda, Optical Semiconductor Devices, Wiley, New York (1999)

    Google Scholar 

  35. J. Hecht, “All-optical networks need optical switches,” Laser Focus World, May 2000, pp. 189–196

    Google Scholar 

  36. S. Donati, Photodetectors: Devices, Circuits and Applications, Prentice Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  37. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Special Top. Quantum Electron., 4(6):913–924 (1998)

    Article  Google Scholar 

  38. H. Zappe, “Semiconductor optical sensors,” Sensors Update, vol. 5 (H. Baltes, W. Göpel, and J. Hesse, eds., Wiley-VCH, Weinheim (1999), chap. 1

    Google Scholar 

  39. Y. Uenishi, H. Tanaka, and H. Ukita, “Characterization of AlGaAs microstructure fabricated by AlGaAs/GaAs micromachining,” IEEE Trans. Electron. Devices, 41(10): 1778–1783 (1994)

    Article  Google Scholar 

  40. W.J. Smith, Modern Optical Engineering, McGraw-Hill, Boston (1990)

    Google Scholar 

  41. S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys., 80(10):5531–1558 (1996)

    Article  Google Scholar 

  42. M.T. Gale, “Replication,” in Micro-optics (H.P. Herzig, ed.), Taylor & Francis, London (1997), chap. 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Zappe, H. (2006). Integrated Micro-Optics. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics