Skip to main content
  • 4535 Accesses

Abstract

Users require inexpensive, reliable sensors and actuators compatible with modern signal processing circuitry. This demand can be satisfied by microsensors and microactuators (microelectromechanical systems, MEMS), notably based on silicon with on-chip circuitry fabricated by using integrated circuit (IC) technology. A large number of such MEMS are based on thermal and thermoelectric principles. They use thermoresistive and thermoelectric thin films for sensor or actuator operation and the concepts of micromachining for device optimization. Indeed, a variety of thermal-based microsensors and microactuators fabricated by standard semiconductor technologies have been demonstrated. [14]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Krummacher and H. Oguey, Sensors and Actuators, A21-23: 636–638 (1990)

    Google Scholar 

  2. T. Nakamura and K. Maenaka, Sensors and Actuators, A21-23:762–769 (1990)

    Google Scholar 

  3. H. Baltes and A. Nathan, in Sensors—a Comprehensive Survey, vol. 1 (T. Grantke and W. H. Ko, eds.), VCH, Weinheim, Germany (1991), pp. 195–215

    Google Scholar 

  4. J. Kramer, P. Seitz, and H. Baltes, Digest of Technical Papers Transducers’ 91, San Francisco (1991), pp. 727–729

    Google Scholar 

  5. A. van den Berg and P. Bergveld, Micro Total Analysis Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands (1994)

    Google Scholar 

  6. J. Köhler, U. Dillner, A. Mokansky, S. Poser, and T. Schulz, “Micro channel reactors for fast thermocycling,” Proc. 2nd Int. Conf. Microreaction Technol, New Orleans (1998), pp. 241–247

    Google Scholar 

  7. H. Baltes, Technical Digest of the 10th Sensor Symposium, Tokyo (T. Nakamura, ed.), Institute of Electrical Engineers of Japan, Tokyo (1991), pp. 17–23

    Google Scholar 

  8. H. Baltes, D. Moser, and E Völklein, in Sensors—a comprehensive survey, vol. 7 (W. Göpel, J. Hesse, and J. N. Zemel, eds.), VCH, Weinheim, Germany (1993), pp. 13–55

    Google Scholar 

  9. T. Ricolfi and J. Scholz, Thermal Sensors, VCH, Weinheim, Germany (1990)

    Book  Google Scholar 

  10. Halbleiter-Sensoren, product information, Siemens AG, München (1991)

    Google Scholar 

  11. H. F. Wolf, Silicon Semiconductor Data, Pergamon Press, Oxford (1969)

    Google Scholar 

  12. R. Holm, Electric Contacts, Theory and Applications, Springer, Berlin (1967)

    Google Scholar 

  13. J.-S. Shie and P. K. Weng, “Fabrication of micro-bolometer on silicon substrate by anisotropic etching technique,” Digest of Technical Papers Transducers’ 91, San Francisco (1991), pp. 627–630

    Google Scholar 

  14. B. E. Cole, R. E. Higashi, and R. A. Wood, “Monolithic two-dimensional arrays of micromachined microstructures for infrared applications,” Proc. IEEE, 86(8): 1679–1686 (1998)

    Article  Google Scholar 

  15. G Scheller, Proc. Sensor 93, Nürnberg, vol. 1 (1993), pp. 87–93

    Google Scholar 

  16. R. Aigner et al., Digest of Technical Papers, Transducers’ 95, Stockholm (1995), pp. 839–842

    Google Scholar 

  17. Microsens SA, Neuchatel/Switzerland, product information (1991)

    Google Scholar 

  18. F. Nuscheier, Archiv f. Elektronik u. Übertragungstechnik, vol. 42 (1988), pp. 80–84

    Google Scholar 

  19. A. G. McNamara, “Semiconductor diodes and transistors as electrical thermometers,” Rev. Sei. Instrum., 33:330–333 (1962)

    Article  Google Scholar 

  20. S. Middelhoek and S. A. Audet, Silicon Sensors, Academic Press, London (1989)

    Google Scholar 

  21. M. P. Timko, “A two-terminal IC temperature transducer,” IEEE J. Solid State Circuits, 11:784–788 (1976)

    Article  Google Scholar 

  22. R. A. Pease, “A new Fahrenheit temperature sensor,” IEEE J. Solid-State Circuits, SC-19(6):971–977 (1984)

    Article  Google Scholar 

  23. T. J. Seebeck, Pogg. Ann., VL133 (1826)

    Google Scholar 

  24. J. C. A. Peltier, Ann. Chem. Phys., 56:371 (1834)

    Google Scholar 

  25. W. Thomson (Lord Kelvin), Proc. R. Soc. Edinburgh Trans. 21 Part I (1857), p. 123

    Google Scholar 

  26. M. Melloni, Ann. Phys., 28:371 (1833)

    Google Scholar 

  27. F. Völklein and H. Baltes, “Optimization tool for the performance parameters of thermoelectric microsensors,” Sensors and Actuators A, 36:65–71 (1993)

    Article  Google Scholar 

  28. A. W. van Herwaarden and P. M. Sarro, “Thermal sensors based on the Seebeck effect,” Sensors and Actuators, 10:321–346 (1986)

    Article  Google Scholar 

  29. F. Völklein and H. Baltes, “Thermoelectric properties of polysilicon films doped with phosphorus and boron,” Sensors and Materials, 3:325–334 (1992)

    Google Scholar 

  30. F. Völklein, A. Wiegand, and V Baier, Sensors and Actuators A, 29:87–91 (1991)

    Article  Google Scholar 

  31. J. Schieferdecker, R. Quad, E. Holzenkämpfer, and M. Schulze, Sensors and Actuators A, 46–47:422–427 (1995)

    Article  Google Scholar 

  32. A. W. van Herwaarden and R M. Sarro, Sensors and Actuators, 10:321–346 (1986)

    Article  Google Scholar 

  33. A. W. van Herwaarden, D. C. van Duyn, and B. W. van Oudheusden, Sensors and Actuators A, 21–23:621–630 (1989)

    Article  Google Scholar 

  34. J. Schieferdecker, M. Schulze, R. Quad, and A. Beudt, Proc. Sensor 93, Nürnberg, vol. 1 (1993), pp. 613–618

    Google Scholar 

  35. M. Simon, J. Schieferdecker, M. Schulze, R. Gottfried-Gottfried, M. Müller, and R. Jahne, Proc. Sensor 97, Nürnberg, vol. 2 (1997), pp. 83–88

    Google Scholar 

  36. U. Münch, D. Jaeggi, N. Schneeberger, A. Schaufelbühl, O. Paul, H. Baltes, and J. Jasper, “Industrial fabrication technology for CMOS infrared sensor arrays,” Digest of Technical Papers, Transducers’ 97, Chicago (1997), pp. 205–208

    Google Scholar 

  37. N. Schneeberger, CMOS microsystems for thermal presence detection, Ph.D. thesis, ETH Zurich, No. 12675 (1998)

    Google Scholar 

  38. F. Völklein and W. Schnelle, Sensors and Materials, 3:41–48 (1991)

    Google Scholar 

  39. A. W. van Herwaarden, D. C. van Duyn, and J. Groeneweg, “Small-size vacuum sensors based on silicon thermopiles,” Sensors and Actuators A, 25–27:565–569 (1991)

    Article  Google Scholar 

  40. A. W. van Herwaarden and P. M. Sarro, J. Vac. Sei. Technol., A5:2454–2457 (1987)

    Article  Google Scholar 

  41. P. K. Weng and J.-S. Shie, Rev. Sei. Instr., 65:492–499 (1994)

    Article  Google Scholar 

  42. D. Moser, R. Lenggenhager, and H. Baltes, “Silicon gas flow sensors using industrial CMOS and bipolar IC technology,” Sensors and Actuators A, 25–27:577–581 (1991)

    Article  Google Scholar 

  43. B. W. van Oudheusden and A. W. van Herwaarden, “High-sensitivity 2-D flow sensor with an etched thermal isolation structure,” Sensors and Actuators A, 21–23:423–430 (1990)

    Google Scholar 

  44. R. G. Johnson and R. E. Higashi, “A highly sensitive silicon chip microtransducer for air flow and differential pressure sensing applications,” Sensors and Actuators, 11:63–72 (1987)

    Article  MATH  Google Scholar 

  45. G. Kaltsas, Proc. Eurosensors XII, Southampton, vol. 2 (1998), pp. 757–760

    Google Scholar 

  46. O. Tabata, IEEE Trans. Electron. Devices, ED-33:361–365 (1986)

    Article  Google Scholar 

  47. M. Klonz and T. Weimann, IEEE Trans. Instr. Meas., 38:335–336 (1988)

    Article  Google Scholar 

  48. H. Dintner, M. Klonz, A. Lerm, F. Völklein, and T. Weimann, IEEE Trans. Instr. Meas., 42:612–614 (1993)

    Article  Google Scholar 

  49. F. Völklein and E. Kessler, Proc. XVII. Int. Conf. on Thermoelectrics, Nagoya (1998), pp. 214–217

    Google Scholar 

  50. R. Marlow and E. Burke, “Module design and fabrication,” in CRC Handbook of Thermoelectrics (D. M. Rowe, ed.), CRC Press, Boca Raton, FL (1995), pp. 597–607

    Google Scholar 

  51. D. M. Rowe, Gao Min, and F. Völklein, “A high performance thin film thermoelectric cooler,” Proc. 33rd Int. Engineering Conf. on Energy Conversion, Colorado Springs (1998), pp. 24–28

    Google Scholar 

  52. F. Völklein, Gao Min, and D. M. Rowe, “Modelling of a microelectromechanical thermoelectric cooler,” Sensors and Actuators A, 75:95–101 (1999)

    Article  Google Scholar 

  53. F. Völklein, V. Baier, U. Dillner, and E. Kessler, Thin Solid Films, 187:253–262 (1990)

    Article  Google Scholar 

  54. A. Boyer and E. Cisse, “Properties of thin film thermoelectric materials: application to sensors using the Seebeck effect,” Mater. Sei. Eng., B13: 103–111 (1992)

    Article  Google Scholar 

  55. D. Moser, CMOS flow sensors, Ph.D. thesis, ETH Zurich, No. 10059 (1993)

    Google Scholar 

  56. R. Lenggenhager, CMOS thermoelectric infrared sensors, Ph.D. thesis, ETH Zurich, No. 10744 (1994)

    Google Scholar 

  57. O. Paul and H. Baltes, “Thermal vacuum sensor by CMOS IC technology and sacrificial metal etching,” Sensors and Materials, 6:245–249 (1994)

    Google Scholar 

  58. D. Jaeggi, Thermal converters by CMOS technology, Ph.D. thesis, ETH Zurich, No. 11567 (1996)

    Google Scholar 

  59. V. M. Meyer, N. Schneeberger, and B. Keller, “Epoxy-protected thermopile as high sensitive heat flux sensor, Digest of Technical Papers Transducers’ 97, Chicago (1997), pp. 1267–1270

    Google Scholar 

  60. O. Brand, M. Hornung, D. Lange, and H. Baltes, “CMOS resonant microsensors,” Proc. SPIE, 3514:238–250 (1998)

    Article  Google Scholar 

  61. P. Malcovati, CMOS thermoelectric sensor interfaces, Ph.D. thesis, ETH Zurich, No. 11424 (1996)

    Google Scholar 

  62. A. Häberli, Compensation and calibration of IC microsensors, Ph.D. thesis, ETH Zurich, No. 12090 (1997)

    Google Scholar 

  63. M. Strasser, R. Aigner, and G. Wachutka, “Analysis of a CMOS low power thermoelectric generator”, Proc. Eurosensors XIV, Copenhagen (2000), pp. 17–20

    Google Scholar 

  64. E. Oesterschulze and R. Kassing, “Thermal and electrical imaging of surface properties with high lateral resolution, Proc. XVI. Int. Conf. on Thermoelectrics, Dresden (1997), pp. 719–725

    Google Scholar 

  65. F. Völklein and H. Baltes, J. Electromech. Syst., 1:193–196 (1992)

    Article  Google Scholar 

  66. M. von Arx, Thermal properties of CMOS thin films, Ph.D. thesis, ETH Zurich, No. 12743 (1998)

    Google Scholar 

  67. H. Kapels, “Material and device characterization in silicon micromachining,” Proc. Symposium on Microtechnology in Metrology and Metrology in Microsystems, Delft 2000, pp. 109–119

    Google Scholar 

  68. M. von Arx, L. Plattner, O. Paul, and H. Baltes, “Micromachined hot plate test structures to measure the heat capacity of CMOS IC thin films,” Sensors and Materials, 10:503–517 (1998)

    Google Scholar 

  69. R. F. Wolffenbuttel, “Optical characterization of silicon-compatible materials,” Proc. Symposium on Microtechnology in Metrology and Metrology in Microsystems, Delft 2000, pp. 79–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Vöelklein, F. (2006). Thermal-Based Microsensors. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics