Skip to main content

The Role of Fungi in Boreal Peatlands

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiro BD, Stocks BJ, Alexander ME, Flanigan MD, Wotton BM (2001) Fire, climate, carbon and fuel management in the Canadian boreal forest. Int J Wildland Fire 10:405–413

    Google Scholar 

  • Apinis AE, Chester CGC, Taligoola HK (1972) Colonisation of Phragmites communis leaves by fungi. Nova Hedwigia 23:113–124

    Google Scholar 

  • Bardgett RD, Kandeler E, Tscherko D, Hobbs PJ, Bezemer TM, Jones TH, Thompson LJ (1999) Below-ground microbial community development in a high temperature world. Oikos 85:193–203

    Google Scholar 

  • Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can J Bot 63:1241–1248

    Google Scholar 

  • Beilman DW (2001) Plant community and diversity changes due to localized permafrost dynamics in bogs of western Canada. Can J Bot 79:983–993

    Google Scholar 

  • Beilman DW, Vitt DH, Halsey LA (2001) Localized permafrost peatlands in western Canada: definition, distributions, and degradation. Arct Antarct Alp Res 33:70–77

    Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    CAS  Google Scholar 

  • Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22:393–399

    Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biochem 24:1089–1099

    CAS  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Google Scholar 

  • Caldwell BA, Trappe JM, Jumpponen A (1996) Physiological characters of dark-septate root endophytes. In: Szaro TM, Bruns TD (eds) 1st international conference on mycorrhizae, 4–9 August 1996. University of California, Berkeley, p 19

    Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92:230–232

    Google Scholar 

  • Christensen M, Whittingham WF (1965) The soil microfungi in open bogs and conifer swamps in Wisconsin. Mycologia 57:882–889

    Google Scholar 

  • Clymo RS (1965) Experiments on breakdown of Sphagnum in two bogs. J Ecol 53:747–757

    Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond Biol Sci 303:605–654

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatlands. Oikos 81:368–388

    Google Scholar 

  • Currah RS, Tsuneda A (1993) Vegetative and reproductive morphology of Phialocephala fortinii (Hyphomycetes, Mycelium radicis atrovirens) in culture. Trans Mycol Soc Jpn 34:345–356

    Google Scholar 

  • Currah RS, Sigler L, Hambleton S (1987) New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can J Bot 65:2473–2482

    Google Scholar 

  • Currah RS, Hambleton S, Smreciu A (1988) Mycorrhizae and mycorrhizal fungi of Calypso bulbosa. Am J Bot 75:739–752

    Google Scholar 

  • Czapek F (1899) Zur Chemie der Zellmembranen bei den Laub-und Lebermoosen. Flora (Jena) 86:361–381

    Google Scholar 

  • Czeczuga B (1993) Aquatic fungi of the Gorbacz and Ostrówski peatbogs. Acta Mycol 28:69–75

    Google Scholar 

  • Danielson RM, Visser S (1990) The mycorrhizal and nodulation status of containergrown trees and shrubs reared in commercial nurseries. Can J For Res 20:609–614

    Google Scholar 

  • Deacon JW (1997) Modern mycology, 3rd edn. Blackwell, Boston

    Google Scholar 

  • Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arct Alp Res 26:304–307

    Google Scholar 

  • Dix NJ (1985) Changes in relationship between water content and water potential after decay and its significance for fungal successions. Trans Br Mycol Soc 85:649–653

    Google Scholar 

  • Domsch KH (1960) Das Pilzspektrum einer Bodenprobe. 3. Nachweis der Einzelpilze. Arch Mikrobiol 35:310–339

    PubMed  CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi, vols 1 and 2. Academic, London

    Google Scholar 

  • Durall DM, Todd AW, Trappe JM (1994) Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas-fir. New Phytol 127:725–729

    CAS  Google Scholar 

  • Farrish KW, Grigal DF (1988) Decomposition in an ombrotrophic bog and a minerotrophic fen in Minnesota. Soil Sci 145:353–358

    Google Scholar 

  • Felix H (1988) Fungi on bryophytes, a review. Bot Helv 98:239–269

    Google Scholar 

  • Fell JW, Hunter IL (1979) Fungi associated with the decomposition of the black rush, Juncus roemerianus, in south Florida. Mycologia 71:322–342

    Google Scholar 

  • Fernando AA (1995) Leptodontidium orchidicola (Mycelium radicis atrovirens complex, Fungi Imperfecti): conidiogenesis and interaction with some subalpine plants in culture. Thesis, University of Alberta, Edmonton

    Google Scholar 

  • Fernando AA, Currah RS (1995) Leptodontidium orchidicola (Mycelium radicis atrovirens complex): aspects of its conidiogenesis and ecology. Mycotaxon 54:287–294

    Google Scholar 

  • Frankland JC (1966) Succession of fungi on decaying petioles of Pteridium aquilium. J Ecol 54:41–63

    Google Scholar 

  • Freeman C, Ostle J, Kang H (2001) An enzymic latch on a global carbon store. Nature 409:149

    PubMed  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Halsey LA, Vitt DH, Zoltai SC (1995) Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Change 30:57–73

    Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581

    Google Scholar 

  • Hambleton S, Currah RS (2000) Molecular characterization of the mycorrhizas of woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, 351–373

    Google Scholar 

  • Hambleton S, Huhtinen S, Currah RS (1999) Hymenoscyphus ericae: a new record from western Canada. Mycol Res 103:1391–1397

    Google Scholar 

  • Harper SHT (1985) Colonization and decomposition of straw by fungi. Trans Br Mycol Soc 85:655–661

    Google Scholar 

  • Heilman-Clausen J (2001) A gradient analyses of communities of macrofungi and slime molds on decaying beech logs. Mycol Res 195:575–596

    Google Scholar 

  • Hennon PE, Shaw CJ, Hansen EM (1990) Symptoms and fungal associations of declining Chamaecyparis nootkatensis in southeast Alaska. Plant Dis 74:267–273

    Google Scholar 

  • Hirschel G, Körner C, Arnone III JA (1997) Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities. Oecologia 110:387–392

    Google Scholar 

  • Hutchison LJ (1990) Studies on the systematic of ectomycorrhizal fungi in axenic culture. II. The enzymatic degradation of selected carbon and nitrogen compounds. Can J Bot 68:1522–1530

    CAS  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Google Scholar 

  • Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Kampichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262

    CAS  Google Scholar 

  • Kasai K, Morinaga T, Horikoshi T (1995) Fungal succession in the early decomposition process of pine cones on the floor of Pinus densiflora forests. Mycoscience 36:325–334

    Google Scholar 

  • Kjøller A, Struwe S (1992) Functional groups of microfungi in decomposition. In: Carrol GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Dekker, New York, pp 631–652

    Google Scholar 

  • Kox E (1954) Der durch Pilze und aerobe Bakterien veranlaßte Pectin-und Cellulose-Abbau im Hochmoor unter besonderer Berücksichtigung des Sphagnum-Abbaus. Arch Mikrobiol 20:111–140

    PubMed  CAS  Google Scholar 

  • Latter PM, Cragg JB, Heal OW (1967) Comparative studies on the microbiology of four moorland soils in the northern Pennines. J Ecol 55:445–464

    Google Scholar 

  • Leake JR, Read DJ (1989) Biology of mycorrhiza in the Ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericea. New Phytol 112:69–76

    CAS  Google Scholar 

  • Leake JR, Read DJ (1990) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993–995

    CAS  Google Scholar 

  • Lindberg B, Theander O (1952) Studies on Sphagnum peat. II. Lignin in Sphagnum. Acta Chem Scand 6:311–312

    CAS  Google Scholar 

  • Lumley TC, Gignac LD, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can J Bot 79:76–92

    Google Scholar 

  • Malmer N (1986) Vegetation gradients in relation to environmental conditions in northwestern European mires. Can J Bot 64:375–38

    Google Scholar 

  • Melillo JM (1983) Will increases in atmospheric CO2 concentrations affect litter decay rates? In: The ecosystem center annual report. Woods Hole Oceanographic Institution, Marine Biological Laboratory, Woods Hole, pp 10–11

    Google Scholar 

  • Melin E (1922) On the mycorrhizas of Pinus sylvestris L. and Picea abies Karst. A preliminary note. J Ecol 9:254–257

    Google Scholar 

  • Monreal M, Berch SM, Berbee M (1999) Molecular diversity of ericoid mycorrhizal fungi. Can J Bot 77:1580–1594

    CAS  Google Scholar 

  • National Wetlands Working Group (1988) Wetlands of Canada. Ecological land classification series, no 24. Sustainable Development Branch, Environment Canada, Ottawa, and Poly Science, Montreal

    Google Scholar 

  • Nilsson M, Bååth E, Söderström B (1992) The microfungal communities of a mixed mire in northern Sweden. Can J Bot 70:272–276

    Google Scholar 

  • Nimz MH, Tutschek R (1977) Kohlenstoff-13-NMR-Spektren von Ligninen, 7. Zur Frage des Ligningehalts von Moosen (Sphagnum magellanicum Brid.). Holzforschung 31:101–106

    CAS  Google Scholar 

  • O’Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic, San Diego, pp 87–103

    Google Scholar 

  • Ouellette GB (1981) Ultrastructural cell wall modifications in secondary xylem of American elm surviving the acute stage of Dutch elm disease. Can J Bot 59:2425–2438

    Google Scholar 

  • Piercey MM, Thormann MN, Currah RS (2002) Mycorrhizal and saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicumand Piceamariana in culture. Mycorrhiza 12:175–180

    PubMed  CAS  Google Scholar 

  • Polyakova AV, Chernov IY, Panikov NS (2001) Yeast diversity in hydromorphic soils with reference to a grass-Sphagnum wetland in western Siberia and a hummocky tundra region at Cape Barrow (Alaska). Microbiol 70:617–622

    CAS  Google Scholar 

  • Pugh GJF (1958) Leaf litter fungi found on Carex paniculata L. Trans Br Mycol Soc 41:185–195

    Google Scholar 

  • Pugh GJF, Mulder JL (1971) Mycoflora associated with Typha latifolia. Trans Br Mycol Soc 57:273–282

    Google Scholar 

  • Ramstedt M, Söderhäll K (1983) Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Trans Br Mycol Soc 81:157–161

    CAS  Google Scholar 

  • Randlett DL, Zak DR, Pregitzer KS, Curtis PS (1996) Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization. Soil Sci Soc Am J 60:1571–1577

    CAS  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochem 38:35–39

    CAS  Google Scholar 

  • Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64:327–344

    CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    CAS  Google Scholar 

  • Redhead SA (1981) Parasitism of bryophytes by agarics. Can J Bot 59:63–67

    Google Scholar 

  • Redhead SA, Spicer KW (1981) Discinella schimperi, a circumpolar parasite of Sphagnum squarrosum, and notes on Bryophytomyces sphagni. Mycologia 73:904–913

    Google Scholar 

  • Rice AV, Currah RS (2001) Physiological and morphological variation in Oidiodendron maius. Mycotaxon 74:383–396

    Google Scholar 

  • Saitô T (1966) Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol Rev 16:245–254

    Google Scholar 

  • Salo K (1993) The composition and structure of macrofungus communities in boreal upland type forests and peatlands in North Karelia, Finland. Karstenia 33:61–99

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, New York

    Google Scholar 

  • Sparrow FK, Lange L (1977) Some bog chytrids. Can J Bot 55:1879–1890

    Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Google Scholar 

  • Summerbell R (1987) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can J Bot 67:1085–1095

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Szumigalski AR, Bayley SE (1996) Decomposition along a bog-fen gradient in central Alberta, Canada. Can J Bot 74:573–581

    Google Scholar 

  • Tanaka Y (1991) Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiol 220:119–129

    CAS  Google Scholar 

  • Thormann MN, Bayley SE (1997) Decomposition along a moderate-rich fen-marsh peatland gradient in boreal Alberta, Canada. Wetlands 17:123–137

    Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (1999) The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450

    Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2001a) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Can J Bot 79:9–22

    CAS  Google Scholar 

  • Thormann M, Currah RS, Bayley SE (2001b) Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist 104:548–559

    Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2002) The relative ability of fungi from Sphagnum fuscum to decompose selected carbon sources. Can J Microbiol 48:204–211

    PubMed  CAS  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2003) Succession of microfungal assemblages in decomposing peatland plants. Plant Soil 250:323–333

    CAS  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2004a) Patterns of distribution of microfungi in decomposing bog and fen plants. Can J Bot 82:710–720

    Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2004b) Microcosm tests of the effects of temperature and microbial species number on the decomposition of sedge and bryophyte litter from southern boreal peatlands. Can J Microbiol 50:793–802

    PubMed  CAS  Google Scholar 

  • Tokumasu S (1994) Trophodynamic structure of a swampy bog at the climax stage of limnological succession III. Filamentous fungi associated with the standing leaves of Typha latifolia. Water Air Soil Pollut 76:491–499

    Google Scholar 

  • Tsuneda A, Chen MH, Currah RS (2001a) Characteristics of a disease of Sphagnum fuscum caused by Scleroconidioma sphagnicola. Can J Bot 79:1217–1224

    Google Scholar 

  • Tsuneda A, Thormann MN, Currah RS (2001b) Modes of cell-wall degradation of Sphagnum fuscum by Acremonium cf. curvulum and Oidiodendron maius. Can J Bot 79:93–100

    Google Scholar 

  • Turetsky MR, Wieder RK (2001) A direct approach to quantifying organic matter lost as a result of peatland wildfire. Can J For Res 31:363–366

    Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Écoscience 7:379–392

    Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912

    CAS  Google Scholar 

  • Untiedt E, Müller K (1985) Colonization of Sphagnum cells by Lyophyllum palustre. Can J Bot 63:757–761

    Google Scholar 

  • Wicklow DT, Yokum DH (1981) Fungal species numbers and decomposition of rabbit feces. Trans Br Mycol Soc 76:29–32

    Google Scholar 

  • Williams CJ, Yavitt JB, Wieder RK, Cleavitt NL (1998) Cupric oxide oxidation products of northern peat and peat forming plants. Can J Bot 76:51–62

    CAS  Google Scholar 

  • Williams RT, Crawford RL (1983) Microbial diversity of Minnesota peatlands. Microb Ecol 9:201–214

    CAS  Google Scholar 

  • Zattau WC (1981) Topographic features of chytrids collected from a Sphagnum bog. Mycologia 73:1189–1194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thormann, M.N. (2006). The Role of Fungi in Boreal Peatlands. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_6

Download citation

Publish with us

Policies and ethics