Skip to main content

Robotics in Hazardous Applications

  • Reference work entry
Springer Handbook of Robotics

Abstract

Robotics researchers have worked hard to realize a long-awaited vision: machines carrying people from burning buildings or tunneling through collapsed rock falls to reach trapped miners. In this chapter we review progress. Researchers still have many challenges ahead of them but there has been remarkable progress in some areas. Hazardous environments present special challenges for the accomplishment of desired tasks depending on the nature and magnitude of the hazards. Hazards may be present in the form of radiological or toxicity dangers to potential explosions. Technology that specialized engineering companies can develop and sell without active help from researchers marks the frontier of feasibility. Just inside this border lie teleoperated robots for explosive ordnance disposal (EOD) and for underwater engineering work. Even with the typical tenfold reduction in manipulation performance imposed by the limits of todayʼs telepresence and teleoperation technology, robots usually offer a more cost-effective solution. Most hazardous applications lie far beyond the frontier, although researchers managed to establish some limited inroads by the turn of the 21st century. Fire fighting, rescue operations, removing high-level nuclear contamination, reactor decommissioning, tunneling through rock falls, and most landmine and unexploded ordnance problems still present many unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

antipersonnel

ASM:

advanced servomanipulator

AT:

antitank

AV:

antivehicle

CB:

cluster bombs

CEA:

Commission de Energie Atomique

EMS:

electrical master–slave manipulators

EOD:

explosive ordnance disposal

GICHD:

Geneva International Center for Humanitarian Demining

GPS:

global positioning system

HMD:

head-mounted display

HMX:

high melting point explosives

ICBL:

International Campaign to Ban Landmines

IED:

improvised explosive device

LAN:

local-area network

MACA:

Afghanistan Mine Action Center

MEMS:

microelectromechanical systems

MR:

magnetorheological

MR:

multiple reflection

MR:

multirobot tasks

MSM:

master–slave manipulator

NASA:

National Aeronautics and Space Agency

RF:

radiofrequency

ROV:

remotely operated vehicle

TSEE:

teleoperated small emplacement excavator

UAV:

unmanned aerial vehicles

US:

ultrasound

UXO:

unexploded ordnance

References

  1. S. Kang, C. Cho, J. Lee, D. Ryu, C. Park, K.-C. Shin, M. Kim: ROBHAZ-DT2: Design and integration of passive double tracked mobile manipulator system for explosive ordnance disposal. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2003. Ph.D. Thesis (IEEE, Piscataway 2003)

    Google Scholar 

  2. A. Kron, G. Schmidt, B. Petzold, M.I. Zah, P. Hinterseer, E. Steinbach: Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In: 2004 IEEE International Conference on Robotics and Automation. 2004. Ph.D. Thesis (IEEE, Piscataway 2004)

    Google Scholar 

  3. W.R. Hamel, R.L. Cress: Elements of Telerobotics Necessary for Waste Clean Up Automation. In: IEEE International Conference on Robotics and Automation. Seoul (2001)

    Google Scholar 

  4. J.C. Ralston, D.W. Hainsworth, D.C. Reid, D.L. Anderson, R.J. McPhee: Recent advances in remote coal mining machine sensing, guidance, teleoperation and field robotics, Robotica 19(5), 513–526 (2001)

    Article  Google Scholar 

  5. GICHD: A Study of Manual Mine Clearance, ed. by T. Lardner (International Centre for Humanitarian Demining, Geneva 2005)

    Google Scholar 

  6. GICHD: A Study of Mechanical Application in Demining (Generva International Centre for Humanitarian Demining, Geneva 2004)

    Google Scholar 

  7. J.P. Trevelyan, S. Tilli, B. Parks, H.C. Teng: Farming minefields: Economics of remediating land with moderate landmine and UXO concentrations, Demining Technol. Inform. Forum J. 1(3) (2002)

    Google Scholar 

  8. C.G. Bruschini, B. Gross: A survey on sensor technology for landmine detection, J. Mine Action 2(1) (1998), http://maic.jmu.edu/journal/2.1/home.htm

  9. A. Göth, I.G. McLean, J.P. Trevelyan: How do dogs detect landmines? A summary of research results. In: Mine Detection Dogs: Training, Operations and Odour Detection, ed. by I.G. McLean (Geneva International Centre for Humanitarian Demining, Geneva 2003) pp. 195–207

    Google Scholar 

  10. P. Debenest, E.F. Fukushima, Y. Tojo, S. Hirose: A new approach to humanitarian demining : Part 2: Development and analysis of pantographic manipulator, Autonom. Robot. 18(3), 323–336 (2005)

    Article  Google Scholar 

  11. S. Havlik: A modular concept of the robotic vehicle for demining operations, Autonom. Robot. 18(3), 253–262 (2005)

    Article  Google Scholar 

  12. J.P. Wetzel: Robotic Applications in Humanitarian Demining. In: Engineering, Construction and Operations in Challenging Environments Earth and Science 2004: Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference. Ph.D. Thesis (American Society of Civil Engineers, Reston 2004)

    Google Scholar 

  13. J.P. Trevelyan: A Suspended Device for Humanitarian Demining. In: MD96: IEE Conference on Detecting Abandoned Landmines. (1996)

    Google Scholar 

  14. J. Trevelyan: Robots: a premature solution for the land mine problem. In: Proceedings of Eighth International Symposium on Robotics Research. (1998)

    Google Scholar 

  15. J.-D. Nicoud: Vehicles and robots for humanitarian demining, Ind. Robot. 24(2), 164–168 (1997)

    Article  Google Scholar 

  16. J.P. Trevelyan: Landmine Research: Technology Solutions Looking for Problems. In: Symposium on Defense and Security: 5415-Detection and Remediation Technologies for Mines and Minelike Targets IX (2004)

    Google Scholar 

  17. H.M. Choset, E.U. Acar, A.A. Rizzi, J.E. Luntz: Sensor-based planning: exact cellular decompositions in terms of critical points. In: Mobile Robots XV and Telemanipulator and Telepresence Technologies VII, Proceedings of the SPIE - The International Society for Optical Engineering. (2000)

    Google Scholar 

  18. Y. Zhang, M. Schervish, E.U. Acar, H. Choset: Probabilistic methods for robotic landmine search. In: Proceedings of RSJ/IEEE International Conference on Intelligent Robots and Systems, 29 Oct.-3 Nov. 2001. (2001)

    Google Scholar 

  19. S. Singh, S. Thayer: Inspired by immunity, Nature 415, 468–470 (2002)

    Article  Google Scholar 

  20. S. Sathyanath, F. Sahin: Application of artificial immune system based intelligent multi agent model to a mine detection problem. In: SMC2002: IEEE International Conference on Systems, Man and Cybernetics, 6-9 Oct. 2002. (2002)

    Google Scholar 

  21. D. Goldberg, M.J. Mataric: Maximizing reward in a non-stationary mobile robot environment, Autonom. Agents Multi-Agent Syst. 6(3), 287–316 (2003)

    Article  Google Scholar 

  22. R.A. Russell: Locating underground chemical sources by tracking chemical gradients in 3 dimensions. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2004. (2004)

    Google Scholar 

  23. D.C. Conner, P.R. Kedrowski, C.F. Reinholtz J.S. Bay: Improved dead reckoning using caster wheel sensing on a differentially steered three-wheeled autonomous vehicle. In: Mobile Robots XV and Telemanipulator and Telepresence Technologies VII, Proc. SPIE 2000 (2000)

    Google Scholar 

  24. S.-D. Kim, C.-H. Lee, S.-J. Yoon, H.-K. Jeong, S.-C. Kang, M.-S. Kim, Y.-K. Kwak: Variable configuration tracked mobile robot for demining operations. In: 2004 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (American Society of Mechanical Engineers, New York 2004)

    Google Scholar 

  25. K. Nonami, R. Yuasa, D. Waterman, S. Amano, H. Ono: Preliminary design and feasibility study of a 6-degree of freedom robot for excavation of unexploded landmine, Autonom. Robot. 18(3), 293–301 (2005)

    Article  Google Scholar 

  26. Y.-J. Lee, S. Hirose: Three-legged walking for fault-tolerant locomotion of demining quadruped robots, Adv. Robot.16(5), 415–426 (2002)

    Google Scholar 

  27. T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, D. Waterman, Y. Nobumoto: Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation, Mechatronics 15(5), 589–609 (2005)

    Article  Google Scholar 

  28. N. Furihata, S. Hirose: Development of mine hands: extended prodder for protected demining operation, Autonom. Robot. 18(3), 337–350 (2005)

    Article  Google Scholar 

  29. H. Yabushita, M. Kanehama, Y. Hirata, K. Kosuge: 3D ground adaptive synthetic aperture radar for landmine detection. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2-6 Aug. 2005. (2005)

    Google Scholar 

  30. A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part I: the improved landmine detection project, Int. J. Syst. Sci. 36(9), 511–528 (2005)

    Article  MATH  Google Scholar 

  31. A.A. Faust, R.H. Chesney, Y. Das, J.E. McFee, K.L. Russel: Canadian teleoperated landmine detection systems. Part II: Antipersonnel landmine detection, Int. J. Syst. Sci. 36(9), 529–543 (2005)

    Article  MATH  Google Scholar 

  32. K.N. Zachery, G.M. Schultz, L.M. Collins: Force Protection Demining System (FPDS) detection subsystem. In: Detection and Remediation Technologies for Mines and Minelike Targets X. Ph.D. Thesis (International Society for Optical Engineering, Bellingham 2005)

    Google Scholar 

  33. J. Coronado-Vergara, G. Avina-Cervantes, M. Devy, C. Parra: Towards landmine detection using artificial vision. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2-6 Aug. 2005. (2005)

    Google Scholar 

  34. J.P. Trevelyan: Demining Research at the University of Western Australia. (Perth 2000), http://www.mech.uwa.edu.au/jpt/demining

  35. S. Rajasekharan, C. Kambhampati: The current opinion on the use of robots for landmine detection. In: 2003 IEEE International Conference on Robotics and Automation. Ph.D. Thesis (Institute of Electrical and Electronics Engineers, Taipei 2003)

    Google Scholar 

  36. J.P. Trevelyan: Reducing Accidents in Demining (The University of Western Australia 2000), http://www.mech.uwa.edu.au/jpt/demining/reports.html

  37. GICHD: A Study of Manual Mine Clearance: Part 4 - Risk Assessment and Risk Management, ed. by T. Lardner (Geneva International Centre for Humanitarian Demining, Geneva 2005)

    Google Scholar 

  38. P. Newnham, D. Daniels: The market for advanced humanitarian mine detectors. In: Detection and Remediation Technologies for Mines and Minelike Targets VI. Ph.D. Thesis (The International Society for Optical Engineering, Orlando 2001)

    Google Scholar 

  39. J. Vertut, P. Coiffet: Teleoperation and robotics, evolution and development, Robot Technol. 3A, 302–307 (1985)

    Google Scholar 

  40. L.I. Slutski: Remote Manipulation Systems: Quality Evaluation and Improvement (Kluwer Academic, Dordrecht 1998)

    Google Scholar 

  41. K.F. Kraiss: Advanced Man–Machine Interaction: Fundamentals and Implementation (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  42. E.G. Johnsen, W.R. Corliss: Human Factors Applications in Teleoperator Design and Operation (Wiley, New York 1971)

    Google Scholar 

  43. T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control, Technology and Industrial Arts (MIT Press 1992) p. 432

    Google Scholar 

  44. W.R. Hamel: Adapted from Chapter 10, Sensor-Based Planning and Control in Telerobotics. In: Control in Robotics and Automation, Sensor-Based Integration, ed. by B.K. Ghosh, N. Xi, T.J. Tarn (Academic, New York 1999) pp. 285–309

    Chapter  Google Scholar 

  45. J.V. Draper: Effects of Force Reflection on Servomanipulator Performance. In: 1987 International Topical Meeting on Robotics and Remote Handling in Hostile Environments (1987)

    Google Scholar 

  46. R. Goertz: Manipulator System Development at ANL. In: 12th Conference on Remote Systems Technology (1962)

    Google Scholar 

  47. R. Goertz: Some Work on Manipulator Systems at ANL, Past, Present and a Look at the Future. In: 1964 Seminars on Remotely Operated Special Equipment (1964)

    Google Scholar 

  48. D.a.M., H. L. Kuban: An Advanced Remotely Maintainable Servomanipulator Concept. In: 1984 National Topical Meeting on Robotics and Remote Handling in Hostile Environments (Gatlinburg 1984)

    Google Scholar 

  49. D. Sands: Cost effective robotics in the nuclear industry, Ind. Robot 33(3), 170–173 (2006)

    Article  MathSciNet  Google Scholar 

  50. S. Sanders: Remote operations for fusion using teleoperation, Ind. Robot 33(3), 174–177 (2006)

    Article  Google Scholar 

  51. B.L. Luk, K.P. Liu, A.A. Collie, D.S. Cooke, S. Chen: Teleoperated climbing and mobile service robots for remote inspection and maintenance in nuclear industry, Ind. Robot 33(3), 194–204 (2006)

    Article  Google Scholar 

  52. P. Desbats, F. Geffard, G. Piolain, A. Coudray: Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant, Ind. Robot 33(3), 178–186 (2006)

    Article  Google Scholar 

  53. B. De Jong, E. Faulring, J.E. Colgate, M. Peshkin, H. Kang, Y.S. Park, T. Ewing: Lessons learned from a novel teleoperation testbed, Ind. Robot 33(3), 187–193 (2006)

    Article  Google Scholar 

  54. S. Hirose, H. Kuwahara, Y. Wakabayashi, N. Yoshioka: The Mobility Design Concepts/Characteristics and Ground Testing of an Offset-Wheel Rover Vehicle. In: International Conference On Mobile Planetary Robots and Rover Roundup (1997)

    Google Scholar 

  55. T. Kagiwada: Robot Design for Stair Navigation, Jpn. Soc. Mech. Eng. Int. J. Series C 39(3), 629–635 (1996)

    Google Scholar 

  56. R. Volpe, R. Ohm, R. Petras, J. Welch, J. Blaram, R. Ivlev: A Prototype Manipulation System for Mars Rover. In: IEEE/RSJ International Conference on intelligent Robots and Systems (Grenoble 1997)

    Google Scholar 

  57. R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, Robot. Autonom. Syst. 40, 151–162 (2002)

    Article  Google Scholar 

  58. K. Yoneda, Y. Ota, S. Hirose: Development of a Hi-Grip Stair Climbing Crawler with Hysteresis Compliant Blocks. In: 4th International Conference on Climbing and Walking Robots (CLAWAR 2001) (Karlsruhe 2001)

    Google Scholar 

  59. S. Hirose, T. Sensu, S. Aoki. The TAQT Carrier: A Pratical Terrain-Adaptive Quadru-Track Carrier Robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (1992)

    Google Scholar 

  60. H. Schempf, E. Mutschler, C. Piepgras, J. Warwick, B. Chemel, S. Boehmke, W. Crowley, R. Fuchs, J. Guyot: Pandora: Autonomous Urban Robotic Reconnaissance System. In: International Conference on Robotics and Automation (Detroit 1999)

    Google Scholar 

  61. J.B. Coughlan: Small All Terrain Mobile Robot (Remo Tec, USA 1991)

    Google Scholar 

  62. T. Takayama, S. Hirose: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space. In: 26th Annual Conference of the IEEE Industrial Electronics Society (Nagoya 2000)

    Google Scholar 

  63. C.H. Cho, W.S. Lee, S. Kang, M.S. Kim, J.B. Song: Rough-Terrain Negotiable Mobile Platform with Passively Adaptive Double-Tracks and its Application to Rescue Missions, Adv. Robot. 19(4), 459–475 (2005)

    Article  Google Scholar 

  64. K. Kato, S. Hirose: Development of the quadruped walking robot, TITAN-IX-mechanical design concept and application for the humanitarian de-mining robot, Adv. Robot. 15(2), 191–204 (2001)

    Article  Google Scholar 

  65. iRobot Inc. 2006. http://www.irobot.com/ May 21

  66. E. Cheung, V.J. Lumelsky: Proximity sensing in robot manipulator motion planning: System and implementation issues, IEEE Trans. Robot. Autom. 5, 740–751 (1989)

    Article  Google Scholar 

  67. B.R. Shetty, M.H. Ang Jr.: Active compliance control of a PUMA 560 robot. In: IEEE International Conference on Robotics and Automation (1996)

    Google Scholar 

  68. B.-S. Kim, S.-K. Yun, S. Kang, C.-S. Hwang, M.-S. Kim, J.-B. Song: Development of a joint torque sensor fully integrated with an actuator. In: 2005 International Conference on Control, Automation and Systems (KINTEX, Gyeonggi-Do 2005)

    Google Scholar 

  69. M. Uebel, M.S. Ali, I. Minis: The Effect of Bandwidth on Telerobot System Performance (Goddard Spaceflight Center 1991)

    Google Scholar 

  70. G. Niemeyer: Telemanipulation with Time Delays, Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  71. D. Ryu, S. Kang, M. Kim, J.-B. Song: Multi-modal user interface for teleoperation of ROBHAZ-DT2 field robot system. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2004 (2004)

    Google Scholar 

  72. A.K. Skula, A.S. Arico, V. Antonucci: An appraisal of electric automobile power sources, Renewab. Sustainab. Energy Rev. 5, 137–155 (2001)

    Article  Google Scholar 

  73. K.W. Ong, G. Seet, S.K. Sim: Sharing and trading in a human-robot system. In: Cutting Edge Robotics, ed. by V. Kordic, A. Lazinica, M. Merdan (2005) pp. 467–496

    Google Scholar 

  74. J. Trevelyan: Redefining robotics for the new millennium, Int. J. Robot. Res. 18(12), 1211–1223 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

James Trevelyan acknowledges Surya Singh for detailed suggestions on the original draft, and would also like to thank the many unnamed mine clearance experts who have provided guidance and comments over many years, as well as Prof. S. Hirose, Scanjack, Way Industry, and Total Marine Systems for providing photographs.

William R. Hamel would like to acknowledge the US Department of Energyʼs Robotics Crosscutting Program and all of his colleagues at the national laboratories and universities for many years of dealing with remote hazardous operations, and all of his collaborators at the Field Robotics Center at Carnegie Mellon University, particularly James Osborn, who were pivotal in developing ideas for future telerobots.

Sungchul Kang ackowledges Changhyun Cho, Woosub Lee, Dongsuk Ryu at KIST, Korea for their providing valuable documents and pictures. He also appreciates Munsang Kim for his leading projects that have produced many of research achievements related to Sect. 48.3 enabling technologies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James P. Trevelyan , Sung-Chul Kang PhD or William R. Hamel Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Trevelyan, J.P., Kang, SC., Hamel, W.R. (2008). Robotics in Hazardous Applications. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics