Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Combustion processes consist of a complex multidimensional interaction between fluid mechanics and chemical kinetics. A comprehensive experimental analysis needs therefore measurements of flow and scalar fields. These measurements need to be performed in-situ with high temporal and spatial resolution as well as high accuracy and precision. In addition, any disturbances during the measurement should be avoided. These requirements are fulfilled best by laser-optical techniques. Whereas flow fields are commonly measured by methods like laser Doppler or particle imaging velocimetry discussed elsewhere, the focus of this chapter is on scalar measurements based on spectroscopy. Scalars of interest are temperatures, chemical species concentrations, or rate of mixing between fuel and oxidant. Following an introduction, Sect. 20.3 presents the interconnection between experimental analysis and numerical simulation of combustion processes. In Sect. 20.4, various spectroscopic techniques are described exemplary in their application to different fields of combustion research. The chapter concludes with aspects on future developments in combustion diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ADC:

analog-to-digital converter

BBO:

Basset–Boussinesq–Oseen

CARS:

coherent anti-Stokes Raman scattering

CARS:

coherent anti-Stokes Raman spectroscopy

CCD:

charge-coupled device

CFD:

computational fluid dynamic

CMD:

count mean diameter

CMD:

count median diameter

CRDLAS:

cavity-ring-down laser-absorption spectroscopy

DAS:

direct absorption spectroscopy

DBR:

distributed Bragg reflector

DFB:

distributed feedback

DFG:

difference-frequency generation

DFWM:

degenerate four-wave mixing

DL:

diode laser

DNS:

direct numerical simulation

EGR:

exhaust gas recirculation

ELIF:

excimer-laser-induced fragmentation

FARLIF:

fuel–air ratio by laser-induced fluorescence

FFT:

fast Fourier transform

FIR:

far-infrared

FMS:

frequency modulation spectroscopy

IC:

initial condition

IC:

internal combustion

ICCD:

intensified CCD

LAS:

laser absorption spectroscopy

LDV:

laser Doppler velocimetry

LES:

large-eddy simulation

LIF:

laser-induced fluorescence

LII:

laser-induced incandescence

MDA:

minimum detectable absorption

NIR:

near-infrared

Nd:YAG:

neodymium-doped yttrium aluminum garnet

OH:

hydroxide,weg

OPG:

optical parametric generation

OPO:

optical parametric oscillator

PAH:

polycyclic aromatic hydrocarbon

PDA:

phase Doppler anemometry

PDE:

partial differential equations

PDF:

probability density function

PIV:

particle image velocimetry

PLIF:

planar laser-induced fluorescence

PS:

polarization spectroscopy

RANS:

Reynolds-averaged Navier–Stokes equations

RELIEF:

Raman excitation plus laser-induced electronic fluorescence

REMPI:

resonance-enhanced multiphoton ionization

SCR:

selective catalytic reduction

SFG:

sum-frequency generation

SHG:

second-harmonic generation

SI:

spark ignition

SNCR:

selective non-catalytic reduction

TDC:

top dead center

TDLAS:

tunable diode laser absorption

TEM:

transmission electron microscopy

TR:

time resolution

UV:

ultraviolet

VCSEL:

vertical-cavity surface-emitting laser

WMS:

wavelength modulation spectroscopy

References

  1. G.R. Kirchhoff, R.W. Bunsen: Chemische Analyse durch Spectralbeobachtungen, Poggend. Annal. 110, 161–176 (1860), in German

    Google Scholar 

  2. A. Einstein: Zur Quantentheorie der Strahlung, Phys. Z. 18, 21–128 (1917), in German

    Google Scholar 

  3. J.P. Gordon, H.H. Zeiger, C.H. Townes: The maser – new type of microwave amplifier, frequency standard and spectrometer, Phys. Rev. 99, 1264–1274 (1955)

    Google Scholar 

  4. T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Google Scholar 

  5. A.G. Gaydon: The Spectroscopy of Flames (Chapman Hall, London 1967)

    Google Scholar 

  6. W. Demtröder: Laserspektroskopie. Grundlagen und Techniken, 3rd edn. (Springer, Berlin, Heidelberg 2000), in German

    Google Scholar 

  7. A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon and Breach, Amsterdam 1996)

    Google Scholar 

  8. K. Kohse-Höinghaus, J.B. Jeffries (Eds.): Applied Combustion Diagnostics (Taylor Francis, New York 2002)

    Google Scholar 

  9. J. Warnatz, U. Maas, R.W. Dibble: Combustion, 3rd edn. (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  10. J. Wolfrum: Lasers in combustion: From basic theory to practical devices, Proc. Combust. Inst. 27, 1–42 (1998)

    Google Scholar 

  11. C. Schulz, V. Sick: Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations, Prog. Energy Combust Sci. 31, 75–121 (2005)

    Google Scholar 

  12. H. Zhao, N. Ladommatos: Optical diagnostics for in-cylinder mixture formation measurements in IC engines, Prog. Energy Combust. Sci. 24, 297–336 (1998)

    Google Scholar 

  13. T. Etzkorn, J. Fitzer, S. Muris, J. Wolfrum: Determination of absolute methyl- and hydroxyl-radical concentrations in a low pressure methane-oxygen flame, Chem. Phys. Lett. 208, 307–310 (1993)

    Google Scholar 

  14. D.F. Davidson, A.Y. Chang, M.D. DiRosa, R.K. Hanson: A CW laser absorption diagnostic for methyl radicals, J. Quant. Spectrosc. Radiat. Transfer 49, 559–571 (1993)

    Google Scholar 

  15. P. Zalicki, R.N. Zare: Cavity ring-down spectroscopy for quantitative absorption measurements, J. Chem. Phys. 102, 2708 (1995)

    Google Scholar 

  16. W.K. Bischel, B.E. Perry, D.R. Crosley: Detection of fluorescence from O and N atoms induced by two-photon absorption, Appl. Opt. 21, 1419–1429 (1982)

    Google Scholar 

  17. R.S. Barlow, C.D. Carter, R.W. Pitz: Multi-scalar diagnostics in turbulent flames. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, London 2003)

    Google Scholar 

  18. K. Müller-Dethlefs, M. Pealat, J.-P.E. Taran: Temperature and hydrogen concentration measurements by CARS in an ethylene-air bunsen flame, Ber. Bunsenges. Phys. Chem. 85, 803–807 (1981)

    Google Scholar 

  19. A. Dreizler, T. Dreier, J. Wolfrum: Thermal grating effects in infrared degenerate four-wave mixing for trace gas detection, Chem. Phys. Lett. 233, 525–532 (1995)

    Google Scholar 

  20. A.A. Suvernev, A. Dreizler, T. Dreier, J. Wolfrum: Polarization-spectroscopic measurement and spectral simulation of OH (A2 Σ-X2 Π) and NH (A3 Π-X3 Σ) transitions, Appl. Phys. B 61, 421–427 (1995)

    Google Scholar 

  21. R.W. Pitz, J.A. Wehrmeyer, J.M. Bowling, T.S. Cheng: Single pulse vibrational Raman scattering by a broadband KrFexcimer laser in a hydrogen/air flame, Appl. Opt. 29, 2325–2332 (1990)

    Google Scholar 

  22. R.L. Vander Wal: Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction, Appl. Phys. B 59, 445–452 (1994)

    Google Scholar 

  23. A. Dreizler, J. Janicka: Diagnostic challenges for gas turbine combustor model validation. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, New York 2002)

    Google Scholar 

  24. M.D. Smooke: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Lecture Notes in Physics (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  25. N. Peters, F.A. Williams: The asymptotic structure of stoichiometric methane-air flames, Combust. Flame 68, 185–207 (1987)

    Google Scholar 

  26. U. Maas, S.B. Pope: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame 88, 239–264 (1992)

    Google Scholar 

  27. J.B. Jeffries, G.P. Smith, D.E. Heard, D.R. Crosley: Comparing LIF measurements and computer models of low pressure flame chemistry, Ber. Bunsenges. Phys. Chem. 96, 1410–1418 (1992)

    Google Scholar 

  28. U. Meier, U. Kienle, I. Plath, K. Kohse-Höinghaus: Two-dimensional laser-induced fluorescence approaches for the accurate determination of radical concentrations and temperature in combustion, Ber. Bunsenges. Phys. Chem. 96, 1401–1410 (1992)

    Google Scholar 

  29. K. Fieweger, R. Blumenthal, G. Adomeit: Shock-tube investigations on the self-ignition of hydrocarbon-air mixtures at high pressures, Proc. Combust. Inst. 25, 1579–1585 (1994)

    Google Scholar 

  30. R. Minetti, M. Carlier, M. Ribaucour, E. Therssen, L.R. Sochet: A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: measurements and modelling, Combust. Flame 102, 298–309 (1995)

    Google Scholar 

  31. G.P. Smith: Diagnostics for detailed kinetic modeling. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, New York 2002) pp. 501–517

    Google Scholar 

  32. K.N.C. Bray: The challenge of turbulent combustion, Proc. Combust. Inst. 26, 1–26 (1996)

    Google Scholar 

  33. W.P. Jones, B.E. Launder: The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer 15, 301–314 (1972)

    Google Scholar 

  34. J. Janicka, A. Sadiki: Large eddy simulation of turbulent combustion systems, Proc. Combust. Inst. 30, 537–548 (2005)

    Google Scholar 

  35. C. Schneider, A. Dreizler, J. Janicka: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows, Flow Turbul. Combust. 74, 103–127 (2005)

    MATH  Google Scholar 

  36. G.H. Wang, N.T. Clemens, P.L. Varghese: High-repetition-rate measurements of temperature and thermal dissipation in nonpremixed turbulent jet flames, Proc. Combust. Inst. 30, 691–700 (2005)

    Google Scholar 

  37. D. Geyer, A. Kempf, A. Dreizler, J. Janicka: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES, Proc. Combust. Inst. 30, 681–689 (2005)

    Google Scholar 

  38. C.S. Barlow, A.N. Karpetis: Scalar length scales and spatial averaging effects in turbulent piloted methans/air jet flames, Proc. Combust. Inst. 30, 673–680 (2005)

    Google Scholar 

  39. T.J. Poinsot, D. Veynante: Theoretical and Numerical Combustion (Edwards, Philadelphia 2005)

    Google Scholar 

  40. R.S. Barlow: Laser diagnostics and their interplay with computations to understand turbulent combustion, Proc. Combust. Inst. 31, 49–76 (2007)

    Google Scholar 

  41. N. Peters: Laminar flamlet concepts in turbulent combustion, Proc. Combust. Inst. 21, 1231–1250 (1986)

    Google Scholar 

  42. R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll: Paradigms in turbulent combustion research, Proc. Combust. Inst. 30, 21–42 (2004)

    Google Scholar 

  43. S.B. Pope: Computations of turbulent combustion: Progress and challenges, Proc. Combust. Inst. 23, 591–612 (1990)

    Google Scholar 

  44. N. Peters: Turbulent Combustion (Cambridge Univ. Press, Cambridge 2000)

    MATH  Google Scholar 

  45. R.S. Barlow, C.D. Carter, R.W. Pitz: Multiscalar diagnostics in turbulent flames. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, New York 2002) pp. 384–407

    Google Scholar 

  46. G. Grünefeld, A. Gräber, A. Diekmann, S. Krüger, P. Andresen: Measurement system for simultaneous species densities, temperature and velocity double-pulse measurements in turbulent hydrogen flames, Combust. Sci. Technol. 135, 135–152 (1998)

    Google Scholar 

  47. R.B. Miles, W.R. Lempert: Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering, Appl. Phys. B 51, 1–7 (1990)

    Google Scholar 

  48. R.W. Dibble, W. Kollmann, R.W. Schefer: Conserved scalar fluxes measured in a turbulent nonpremixed flame by combined laser Doppler velocimetry and laser Raman scattering, Combust. Flame 55, 307–321 (1984)

    Google Scholar 

  49. A. Nauert, A. Dreizler: Conditional velocity measurements by simulatenously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame, Z. Phys. Chem. 219, 635–648 (2005)

    Google Scholar 

  50. S. Geiss, A. Dreizler, Z. Stojanovic, A. Sadiki, J. Janicka: Experimental investigation of turbulence modification in a non-reactive two-phase flow, Exp. Fluids 36, 344–354 (2004)

    Google Scholar 

  51. H.-E. Albrecht, M. Borys, N. Damaschke, C. Tropea: Laser Doppler and Phase Doppler Measurement Techniques (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  52. N. Damaschke, H. Nobach, C. Tropea: Optical limits of particle concentration for multidimensional particle sizing techniques in fluid mechanics, Exp. Fluids 32, 143–152 (2002)

    Google Scholar 

  53. M.C. Jermy, D.A. Greenalgh: Planar dropsizing by elastic fluorescence scattering in sprays too dense for phase Doppler measurements, Appl. Phys. B 71, 703–710 (2000)

    Google Scholar 

  54. I. Düwel, J. Schorr, J. Wolfrum, C. Schulz: Laser-induced fluorescence of tracers dissolved in evaporating droplets, Appl. Phys. B 78, 127–131 (2004)

    Google Scholar 

  55. H.C. Hottel, A.F. Sarofim: Radiative Heat Transfer (McGraw Hill, New York 1997)

    Google Scholar 

  56. A.L. Crosbie, J.B. Farrell: Exact formulation of multiple scattering in a three-dimensional cylindrical geometry, J. Quant. Spectrosc. Radiat. Heat Transfer 31, 397–416 (1984)

    Google Scholar 

  57. J.T. Farmer, J.R. Howell: Monte Carlo prediction of radiative heat transfer in homogeneous, anisotropic, nongray media, J. Thermophys. Heat Transfer 8, 133–139 (1994)

    Google Scholar 

  58. A. Soufiani, E. Djavdan: A comparison between weigthed sum of gray gases and statistical narrow-band radiation models for combustion applications, Combust. Flame 97, 240–250 (1994)

    Google Scholar 

  59. R. Koch, S. Wittig, B. Noll: The harmonic transmission model: A new approach to multidimensional radiative transfer calculation in gases under consideration of pressure broadening, Int. J. Heat Mass Transfer 34, 1871–1880 (1991)

    Google Scholar 

  60. J. Brübach, J. Zetterberg, A. Omrane, Z.S. Li, M. Aldén, A. Dreizler: Determination of surface normal temperature gradients using thermographic phosphors and filtered Rayleigh scattering, Appl. Phys. B 84, 537–541 (2005)

    Google Scholar 

  61. T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, C. Schulz: Laser-based temperature imaging close to surfaces with toluene and NO-LIF, J. Phys.: Conference Series 45, 69–76 (2006)

    Google Scholar 

  62. D. Geyer: 1D Raman/Rayleigh experiments in a turbulent opposed-jet. PhD Thesis (TU Darmstadt, Darmstadt 2004)

    Google Scholar 

  63. D. Geyer, A. Dreizler, J. Janicka, A.D. Permana, J.-Y. Chen: Finite rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulation, Proc. Combust. Inst. 30, 711–718 (2005)

    Google Scholar 

  64. S.K. Omar, D. Geyer, A. Dreizler, J. Janicka: Investigation of flame structures in turbulent partially premixed counter-flow flames using laser-induced fluorescence, Prog. Comput. Fluid Dyn. 4, 241–249 (2004)

    Google Scholar 

  65. B. Böhm, D. Geyer, K.K. Venkatesan, N.M. Laurendeau, M.W. Renfro: Simulatenous PIV/PTV/OH-PLIF imaging: Conditional flow field statistics in partially-premixed turbulent opposed jet flames, Proc. Combust. Inst. 31, 709–717 (2007)

    Google Scholar 

  66. K.K. Venkatesan, N.M. Laurendeau, M.W. Renfro, D. Geyer, A. Dreizler: Time-resolved measurements of hydroxyl in stable and extinguishing partially-premixed turbulent opposed-jez flames, Flow Turbulence Combustion 76, 257–278 (2006)

    Google Scholar 

  67. D. Geyer, A. Kempf, A. Dreizler, J. Janicka: Turbulent opposed jet flames: a critical benchmark for combustion LES, Combust. Flame 143, 524–548 (2005)

    Google Scholar 

  68. K. Shimoda: Limits of sensitivity of laser spectrometers, Appl. Phys. 1, 77–86 (1973)

    Google Scholar 

  69. C.A. Taatjes, D.B. Oh: Time-resolved wavelength modulation spectroscopy measurements of HO2 kinetics, Appl. Opt. 36, 5817–5821 (1997)

    Google Scholar 

  70. M.G. Allen: Diode laser absorption sensors for gas dynamic and combustion flows, Meas. Sci. Technol. 9, 545–562 (1998)

    Google Scholar 

  71. S. Schäfer, M. Mashni, J. Sneider, A. Miklos, P. Hess, V. Ebert, K.-U. Pleban, H. Pitz: Sensitive detection of methane with 1.65 μm diode laser by photoacoustic and absorption spectroscopy, Appl. Opt. 66, 511–516 (1998)

    Google Scholar 

  72. M.S. Chou, A.M. Dean, D. Stern: Laser absorption measurements on OH, NH and NH2 in NH3/O2 flames: Determination of an oscillator strength for NH2, J. Chem. Phys. 76, 5334–5340 (1982)

    Google Scholar 

  73. S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, D. Romanini: Cavity ring-down spectroscopy of OH radicals in low-pressure flames, Appl. Phys. B 66, 377 (1998)

    Google Scholar 

  74. J.J. Scherer, D.J. Rakestraw: Cavity ring-down laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame, J. Chem. Phys 265, 169 (1997)

    Google Scholar 

  75. J.J. Scherer, D.J. Rakestraw: Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low-pressure flame, Chem. Phys. Lett. 265, 168–176 (1997)

    Google Scholar 

  76. K. Kohse-Höinghaus, U. Meier, B. Attal-Trétout: Laser-induced fluorescence study of OH in flat flames of 1-10 bar compared with resonance CARS experiments, Appl. Opt. 29, 1560–1569 (1990)

    Google Scholar 

  77. C.D. Carter, G.B. King, N.M. Laurendeau: Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames, Appl. Opt. 31, 1511–1522 (1992)

    Google Scholar 

  78. T. Dreier, D. Rakestraw: Measurement of OH rotational temperatures in a flame using degenerate four wave mixing, Opt. Lett. 15, 72–74 (1990)

    Google Scholar 

  79. H. Bervas, B. Attal-Tretout, S. Le Boiteux, J.P. Taran: OH detection and spectroscopy by DFWM in flames: comparison with CARS, J. Phys. B 25, 949–969 (1992)

    Google Scholar 

  80. T. Dreier, D.J. Rakestraw: Degenerate four-wave mixing diagnostics on OH and NH radicals in flames, Appl. Phys. B 50, 479–485 (1990)

    Google Scholar 

  81. G.J. Germann, R.L. Farrow, D.J. Rakestraw: Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2, J. Opt. Soc. Am. B 12, 25–32 (1995)

    Google Scholar 

  82. R.L. Vander Wal, B.E. Holmes, J.B. Jeffries, P.M. Danehy, R.L. Farrow, D.J. Rakestraw: Detection of HF using infrared degenerate four-wave mixing, Chem. Phys. Lett. 191, 251–258 (1992)

    Google Scholar 

  83. R.L. Farrow, M.N. Bui-Pham: Degenerate four-wave mixing measurements of methyl radical distributions in hydrocarbon flames: Comparison with model predictions, Proc. Combust. Inst. 26, 975–983 (1996)

    Google Scholar 

  84. C.F. Kaminski, I.G. Hughes, P. Ewart: Degenerate four-wave mixing spectroscopy and spectral simulation of C2 in an atmospheric pressure oxy-acetylene flame, J. Chem. Phys. 106, 5324–5332 (1997)

    Google Scholar 

  85. B. Attal, D. Débarre, K. Müller-Dethlefs, J.P.E. Taran: Resonance-enhanced coherent anti-Stokes Raman scattering in C2, Rev. Phys. Appl. 18, 39–50 (1983)

    Google Scholar 

  86. B. Attal-Trétout, P. Berlemont, J.P. Taran: Three-colour CARS spectroscopy of the OH radical at triple resonance, Mol. Phys. 70, 1–51 (1990)

    Google Scholar 

  87. L.A. Rahn, P.L. Mattern, R.L. Farrow: A comparison of coherent and spontaneous Raman combustion diagnostics, Proc. Combust. Inst. 18, 1533–1542 (1981)

    Google Scholar 

  88. A.C. Eckbreth, R.J. Hall: CARS concentration sensitivity with aqnd without nonresonant background suppression, Combust. Sci. Technol. 25, 175–192 (1981)

    Google Scholar 

  89. T. Dreier, J. Wolfrum: Detection of the free OH (X2 Π) radical by CARS spectroscopy, J. Chem. Phys. 80, 975–976 (1984)

    Google Scholar 

  90. T. Dreier, J. Wolfrum: Detection of free NH2 (X2B1) radicals by CARS spectroscopy, Appl. Phys. B 33, 213–218 (1984)

    Google Scholar 

  91. T.N. Tanada, J. Velazques, N. Hemmi, T.A. Cool: Detection of toxic emissions from incinerators, Ber. Bunsenges. Phys. Chem. 97, 1516–1526 (1993)

    Google Scholar 

  92. C. Weickhard, U. Boesl: Time-resolved trace analysis of exhaust gas by means of laser mass spectrometry, Ber. Bunsenges. Phys. Chem. 97, 1716–1719 (1993)

    Google Scholar 

  93. K. Nyholm, M. Kaivola, C.G. Aminoff: Polarization spectroscopy applied to C2 detection in a flame, Appl. Phys. B 60, 5–10 (1995)

    Google Scholar 

  94. K. Nyholm: Measurements of OH rotational temperatures in flames by using polarization spectroscopy, Opt. Commun. 111, 66–70 (1994)

    Google Scholar 

  95. R.S. Barlow, A.N. Karpetis: Scalar length scales and spatial averaging effects in turbulent piloted methane/eir jet flames, Proc. Combust. Inst. 30, 673–680 (2005)

    Google Scholar 

  96. J.J. Scherer, J.B. Paul, A. OʼKeefe, R.J. Saykally: Cavity ringdown laser absorption spectroscopy: History, development, and application to pulsed molecular beams, Chem. Rev. 97, 25 (1997)

    Google Scholar 

  97. W. Juchmann, H. Latzel, D.-I. Shin, G. Peiter, T. Dreier, H.-R. Volpp, J. Wolfrum, R.P. Lindstedt, K.M. Leung: Absolute radical concentration measurements and modeling of low pressure CH4/O2/NO flames, Proc. Combust. Inst 27, 469–476 (1998)

    Google Scholar 

  98. M. Bachmann, J. Griesheimer, K.-H. Homann: Thermal and chemical influences on the soot mass growth, Proc. Combust. Inst. 25, 635–643 (1994)

    Google Scholar 

  99. M. Hausmann, K.H. Homann: Scavenging of hydrocarbon radicals from flames with dimethyl-disulfide II. Hydrocarbon radicals in fuel-rich low-pressure flames of acetylene, ethylene, 1,3-butadiene and methane with oxygen, Ber. Bunsenges. Phys. Chem. 101, 651–667 (1997)

    Google Scholar 

  100. J. Ahrens, A. Keller, R. Kovacs, K.-H. Homann: Large molecules, radicals, ions and soot particles in fuel-rich hydrocarbon flames. Part III: REMPI mass spectrometry of large flame PAHs and fullerenes and their quantitative calibration through sublimation, Ber. Bunsenges. Phys. Chem. 102, 1823–1839 (1998)

    Google Scholar 

  101. M. Woyde, W. Stricker: The application of CARS for temperature measurements in high pressure combustion systems, Appl. Phys. B 50, 519–525 (1990)

    Google Scholar 

  102. T. Dreier, M. Ridder, G. Schiff, A. Saur, A.A. Suvernev: Determination of temperature from N2 and O2 CARS spectra at very high pressure, Proc. Combust. Inst. 25, 1727–1734 (1994)

    Google Scholar 

  103. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll: Applications of rotational CARS for temperature measurements at high pressure and in particle-laden flames. In: Temperature: Its Measurements and Control in Science and Industry, ed. by J.F. Schooley (American Institute of Physics, New York 1992) pp. 679–684

    Google Scholar 

  104. R.L. Vander Wal, R.L. Farrow, D.J. Rakestraw: High-resolution investigation of degenerate four-wave mixing in the γ(0,0) band of nitric oxide, Proc. Combust. Inst. 24, 1653–1659 (1992)

    Google Scholar 

  105. S.J. Tsay, K.G. Owens, K.W. Aniolek, D.L. Miller, N.P. Cernansky: Detection of CN by degenerate four-wave mixing, Opt. Lett. 20, 1725–1727 (1995)

    Google Scholar 

  106. S. Williams, R.N. Zare, L.A. Rahn: Reduction of degenerate four-wave mixing spectra to relative populations II. Strong-field limit, J. Chem. Phys. 101, 1093–1107 (1994)

    Google Scholar 

  107. A.P. Smith, G. Hall, B.J. Whitaker, A.G. Astill, D.W. Neyer, P.A. Delve: Effect of inert gases on the degenerate four-wave mixing spectrum of NO2, Appl. Phys. B 60, 11–18 (1995)

    Google Scholar 

  108. G. Hall, A.G. Suits, B.J. Whitaker: Resonant degenerate four wave mixing detection of HCO, Chem. Phys. Lett. 203, 277–282 (1993)

    Google Scholar 

  109. K. Nyholm, R. Fritzon, M. Aldén: Two-dimensional imaging of OH in flames by use of polarization spectroscopy, Opt. Lett. 18, 1672–1674 (1993)

    Google Scholar 

  110. B. Löfstedt, R. Fritzon, M. Aldén: Investigation of NO detection in flames using polarization spectroscopy, Appl. Opt. 35, 2140–2146 (1996)

    Google Scholar 

  111. T. Reichardt, R.P. Lucht: Theoretical calculation of line shapes and saturation effects in polarization spectroscopy, J. Chem. Phys. 109, 5830–5843 (1998)

    Google Scholar 

  112. J.B. Kelman, A.R. Masri: Reaction zone structure and scalar dissipation rates in turbulent diffusion flames, Appl. Opt. 36, 3506–3514 (1997)

    Google Scholar 

  113. Q.V. Nguyen, P.H. Paul: The time evolution of a vortex-flame interaction observed via planar laser-induced fluorescence imaging of CH and OH, Proc. Combust. Inst. 26, 357–364 (1996)

    Google Scholar 

  114. A.R. Masri, R.W. Dibble, R.S. Barlow: The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements, Prog. Energy Combust. Sci. 22, 307–362 (1996)

    Google Scholar 

  115. M. Decker, A. Schik, U.E. Meier, W. Stricker: Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets, Appl. Opt. 37, 5620–5627 (1998)

    Google Scholar 

  116. M. Péalat, P. Bouchardy, M. Lefebvre, J.P. Taran: Precision of multiplex CARS temperature measurements, Appl. Opt. 24, 1012–1022 (1985)

    Google Scholar 

  117. R.P. Lucht, D. Dunn-Rankin, T. Walter, T. Dreier, S.C. Bopp: Heat transfer in engines: Comparison of CARS thermal boundary layer measurements and heat flux measurements, SAE Techn. Paper Ser. 910722 (1991)

    Google Scholar 

  118. A.C. Eckbreth, G.M. Dobbs, J.H. Stufflebeam, P.A. Tellex: CARS temperature measurements in augmented jet engine exhausts, Appl. Opt. 23, 1328–1339 (1984)

    Google Scholar 

  119. A.C. Eckbreth, T.J. Anderson, J.A. Shirley: Laser Raman diagnostics for propulsion systems development, Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993)

    Google Scholar 

  120. R. Bédué, R. Gastebois, R. Bailly, M. Pealat, J.P. Taran: CARS measurements in a simulated turbomachine combustor, Combust. Flame 57, 141–153 (1984)

    Google Scholar 

  121. B. Lavorel, G. Millot, J. Bonamy, D. Robert: Study of rotational relaxation fitting laws from calculation of SRS N2 Q-branch, Chem. Phys. 115, 69–78 (1987)

    Google Scholar 

  122. G. Millot, R. Saint-Loup, S. Santos, R. Chaux, H. Berger, J. Bonamy: Collisional effects in the stimulated Raman Q-branch of O2 and O2-N2, J. Chem. Phys. 96, 961–971 (1992)

    Google Scholar 

  123. L.A. Rahn, R.L. Farrow, G.J. Rosasco: Measurement of the self-broadening of the H2 Q(0-5) Raman transitions from 295 to 1000 K, Phys. Rev. A 43, 6075–6088 (1991)

    Google Scholar 

  124. J.P. Looney, G.J. Rosasco, L.A. Rahn, W.S. Hurst, J.W. Hahn: Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K, Chem. Phys. Lett. 161, 232–238 (1989)

    Google Scholar 

  125. B. Lavorel, G. Millot, G. Fanjoux, R. Saint-Loup: Study of collisional effects on bandshapes of the ν 1/2ν 2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. III. Modeling of collisional narrowing and study of vibrational shifting and broadening at high temperature, J. Chem. Phys. 101, 174–177 (1994)

    Google Scholar 

  126. W. Kiefer: Non-linear Raman spectroscopy and its chemical applications. In: NATO Advanced Study Insitutes Series C: Mathematical and Physical Sciences, ed. by W. Kiefer, D.A. Long (Reidel, Dordrecht 1982) pp. 241–260

    Google Scholar 

  127. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum: Two-dimensional visualization of the flame front in an internal combustion engine by laser-induced fluorescence of OH radicals, Appl. Phys. B 47, 287–293 (1988)

    Google Scholar 

  128. P.H. Paul, H.N. Najm: Planar laser-induced fluorescence imaging of flame heat release, Proc. Combust. Inst. 27, 43–50 (1998)

    Google Scholar 

  129. A. Hoffmann, C. Schulz, J. Ruckwied, D. Malcherek, T. Dreier, R. Schießl, U. Maas: Three-dimensional measurement of OH-concentration gradients in a turbulent flame by simultaneous laser induced fluorescence and Raman scattering. In: European Combustion Meeting (The Combustion Institute, Orléans 2003)

    Google Scholar 

  130. P.C. Miles: Raman line imaging for spatially and spectrally resolved mole fraction measurements in internal combustion engines, Appl. Opt. 38, 1714–1732 (1999)

    Google Scholar 

  131. G. Grünefeld, M. Schütte, P. Andresen: Simultaneous multiple-line Raman/Rayleigh/LIF measurements in combustion, Appl. Phys. B 70, 309–313 (2000)

    Google Scholar 

  132. S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, J. Wolfrum: Simultaneous single-shot laser-based imaging of formaldehyde, OH and temperature in turbulent flames, Proc. Combust. Inst. 28, 279–286 (2000)

    Google Scholar 

  133. S. Böckle, J. Kazenwadel, C. Schulz: Laser-diagnostic multi-species imaging in strongly swirling natural gas flames, Appl. Phys. B 71, 741–746 (2000)

    Google Scholar 

  134. S. Einecke, C. Schulz, V. Sick: Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion, Appl. Phys. B 71, 717–723 (2000)

    Google Scholar 

  135. W. Koban, J. Schorr, C. Schulz: Oxygen distribution imaging with a novel two-tracer laser-induced fluorescence technique, Appl. Phys. B 74, 111–114 (2002)

    Google Scholar 

  136. C.F. Kaminski, J. Hult, M. Aldén: High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame, Appl. Phys. B 68, 757–760 (1999)

    Google Scholar 

  137. C.F. Kaminski, M.B. Long: Multidimensional diagnostics in space and time. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, London 2003) pp. 224–251

    Google Scholar 

  138. I. Düwel, J. Schorr, P. Peuser, P. Zeller, J. Wolfrum, C. Schulz: Spray diagnostics using an all solid-state Nd:YAlO3 laser and fluorescence tracers in commercial gasoline and Diesel fuels, Appl. Phys. B 79, 249–254 (2004)

    Google Scholar 

  139. W. Meier, O. Keck: Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths, Meas. Sci. Technol. 13, 741–749 (2002)

    Google Scholar 

  140. A. Buschmann, F. Dinkelacker, M. Schäfer, T. Schäfer, J. Wolfrum: Measurement of the instantaneous detailed flame structure in turbulent premixed combustion, Proc. Combust. Inst. 26, 619 (1996)

    Google Scholar 

  141. H.B. Najm, P.H. Paul, C.J. Mueller, P. Wyckoff: On the adequacy of certain experimental observables as measurements of flame burning rate, Combust. Flame 113, 312–322 (1998)

    Google Scholar 

  142. T. Landenfeld, A. Kremer, E.P. Hassel, J. Janicka, T. Schäfer, J. Kazenwadel, C. Schulz, J. Wolfrum: Laserdiagnostic and numerical studies of strongly swirling natural-gas flames, Proc. Combust. Inst. 27, 1023–1030 (1998)

    Google Scholar 

  143. D.I. Shin, G. Peiter, T. Dreier, H.-R. Volpp, J. Wolfrum: Spatially resolved measurements of CN, CH, NH and H2CO concentration profiles in a domestic gas boiler, Proc. Combust. Inst. 28, 319–325 (2000)

    Google Scholar 

  144. N. Garland: Assignment of formaldehyde laser-induced Fluorescence spectrum from the Sandia engine experiment, SRI International MP 84-033 (1984)

    Google Scholar 

  145. D. Grebner, J. Hein, W. Triebel, A. Burkert, J. König, C. Eigenbrod: 2D-fast-scan cool-flame diagnostic using formaldehyde-LIF excited by XeF excimer laser radiation. In: Proc. Joint Meeting of the British German and French sections of the Combustion Institute Nancy (The Combustion Institute, Nancy 1999) pp. 485–487

    Google Scholar 

  146. S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz: Single-shot laser-induced fluorescence imaging of formaldehyde with XeF excimer excitation, Appl. Phys. B 70, 733–735 (2000)

    Google Scholar 

  147. J. Weickert: Anisotropic Diffusion in Image Processing (Teubner, Stuttgart 1998)

    MATH  Google Scholar 

  148. H. Scharr, B. Jähne, S. Böckle, J. Kazenwadel, T. Kunzelmann: Flame front analysis in turbulent combustion. In: 22. DAGM Symposium (Deutsche Arbeitsgemeinschaft Mustererkennung, Kiel 2000) pp. 325–332

    Google Scholar 

  149. N. Fricker, W. Leuckel: The characteristics of swirl-stabilized natural gas flames. Part 3: the effect of swirl and burner mouth geometry on flame stability, J. Inst. Fuel 49, 152–158 (1976)

    Google Scholar 

  150. T. Dreier, A. Dreizler, J. Wolfrum: The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics, Appl. Phys. B 55, 381–387 (1992)

    Google Scholar 

  151. W. Ketterle, M. Schäfer, A. Arnold, J. Wolfrum: 2D single shot imaging of OH radicals using tunable excimer lasers, Appl. Phys. B 54, 109–112 (1992)

    Google Scholar 

  152. E.W. Kaiser, K. Marko, D. Klick, L. Rimai, C.C. Wang, B. Shirinzadeh, D. Zhou: Measurement of OH density profiles in atmospheric-pressure propane-air flames, Combust. Sci. Tech. 50, 163–183 (1986)

    Google Scholar 

  153. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker: Quantification of NO A-X(0,2) LIF: Investigation of calibration and collisional influences in high-pressure flames, Appl. Opt. 38, 434–1443 (1999)

    Google Scholar 

  154. B. Yip, D.C. Fourguette, M.B. Long: Three-dimensional gas concentration and gradient measurements in a photoacoustically perturbed jet, Appl. Opt. 25, 3919–3923 (1986)

    Google Scholar 

  155. J.H. Frank, K.M. Lyons, M.B. Long: Technique for three-dimensional measurements of the time development of turbulent flames, Opt. Lett. 16, 958–960 (1991)

    Google Scholar 

  156. J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, B. Johansson: Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine, Proc. Combust. Inst. 29, 679–685 (2002)

    Google Scholar 

  157. A. Hoffmann, F. Zimmermann, H. Scharr, S. Krömker, C. Schulz: Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging, Appl. Phys. B 80, 125–131 (2005)

    Google Scholar 

  158. S.S. Sattler, F.C. Gouldin, N.T. Boertlein: Combined crossed-plane imaging and stereo-particle image velocimetry. In: Third Joint Meeting of the U.S. Sections of the Combustion Institute (The Combustion Institute, Chicago 2003)

    Google Scholar 

  159. D.A. Knaus, F.C. Gouldin: Measurement of flamelet orientations in premixed flames with positive and negative Markstein numbers, Proc. Combust. Inst. 28, 367–373 (2000)

    Google Scholar 

  160. D.A. Knaus, F.C. Gouldin, D.C. Bingham: Assessment of crossed-plane tomography for flamelet surface normal measurements, Combust. Sci. Technol. 174, 101–134 (2002)

    Google Scholar 

  161. A. Hoffmann, F. Zimmermann, and C. Schulz: Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with a single laser. In: First International Conference on Optical and Laser Diagnostics (London, 2002), in press

    Google Scholar 

  162. A. Karpetis, R. Barlow: Measurements of flame orintation and scalar dissipation in turbulent hydrocarbon flames. In: Third Joint Meeting of the U.S. Sections of The Combustion Institute (The Combustion Institute, Chicago 2003)

    Google Scholar 

  163. C. Dartu: Visualization of Volumetric Datasets (Universität Heidelberg, Heidelberg 2001)

    MATH  Google Scholar 

  164. C. Kaminski, J. Hult, M. Aldén, S. Lindenmaier, A. Dreizler, U. Maas, M. Baum: Spark ignition of turbulent methane/air mixtures revealed by time resolved laser induced fluorescence and direct numerical simulations, Proc. Combust. Inst. 28, 399–405 (2000)

    Google Scholar 

  165. A. Dreizler, S. Lindenmaier, U. Maas, J. Hult, M. Aldén, C.F. Kaminski: Characterisation of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparisons with chemical kinetics calculations, Appl. Phys. B 70, 287–294 (2000)

    Google Scholar 

  166. R.B. Williams, P. Ewart, A. Dreizler: Velocimetry of gas flows using degeneratre four-wave mixing, Opt. Lett. 19, 1486–1488 (1994)

    Google Scholar 

  167. R.W. Pitz, J.A. Wehrmeyer, L.A. Ribarov, D.A. Oguss, F. Batliwala, P.A. DeBarber, S. Deutsch, P.E. Dimotakis: Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry, Meas. Sci. Technol. 11, 1259–1271 (2000)

    Google Scholar 

  168. R. Miles, C. Cohen, J. Conners, P. Howard, S. Huang, E. Markovitz, G. Russell: Velocity measurements by vibrational tagging and fluorescent probing of oxygen, Opt. Lett. 12, 861 (1987)

    Google Scholar 

  169. R.B. Miles, W. Lempert, B. Zhang: Turbulence structure measurement by RELIEF flow tagging, Fluid. Dyn. Res. 8, 9–17 (1991)

    Google Scholar 

  170. S. Krüger, G. Grünefeld: Gas-phase velocity field measurements in dense sprays by laser-based flow tagging, Appl. Phys. B 70, 463–466 (2000)

    Google Scholar 

  171. T. Elenbaas, N.M. Sijtsema, R.A.L. Tolboom, N.J. Dam, W. van de Water, J.J. ter Meulen: Characterization of turbulence by air photolysis and recombination tracking (APART), AIAA 2002-0694 (American Institute of Aeronautics and Astronautics, Inc., 2002)

    Google Scholar 

  172. I. Düwel, P. Peuser, P. Zeller, J. Wolfrum, C. Schulz: Laser-based spray diagnostics in commercial fuels using a new all-solid-state laser system. In: ILASS Europe (Nottingham 2004)

    Google Scholar 

  173. G. Josefsson, I. Magnusson, F. Hildenbrand, C. Schulz, V. Sick: Multidimensional laser diagnostic and numerical analysis of NO formation in a gasoline engine, Proc. Combust. Inst. 27, 2085–2092 (1998)

    Google Scholar 

  174. W.G. Bessler, M. Hofmann, F. Zimmermann, G. Suck, J. Jakobs, S. Nicklitzsch, T. Lee, J. Wolfrum, C. Schulz: Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection, Proc. Combust. Inst. 30, 2667–2674 (2005)

    Google Scholar 

  175. M.J. Hall, P. Zuzek, R.W. Anderson: Fiber optic sensor for crank angle resolved measurements of burned gas residual fraction in the cylinder of an SI engine, SAE Techn. Paper Ser. 2001-01-1921 (2001)

    Google Scholar 

  176. R. Reichle, C. Pruss, W. Osten, H.J. Tiziani, F. Zimmermann, C. Schulz: Acquisition of combustion parameters close to the ignition spark with a fiber optic sensor. In: Optical measurement systems for industrial inspection IV, Vol. 5856, ed. by W. Osten, C. Gorecki, E.L. Novak (SPIE-The International Society for Optical Engineering, Bellingham, WA 2005) pp. 158–168

    Google Scholar 

  177. M. Richter, B. Axelsson, M. Aldén: Engine diagnostics using laser-induced fluorescence signals collected through an endoscopic detection system, SAE Techn. Paper Ser. 982465 (1998)

    Google Scholar 

  178. H. Neij, M. Aldén: Application of two-photon laser-induced fluorescence for visualization of water vapor on combustion environments, Appl. Opt. 33, 6514–6523 (1994)

    Google Scholar 

  179. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Carbon dioxide UV laser-induced fluorescence in high-pressure flames, Chem. Phys. Lett. 375, 344–349 (2003)

    Google Scholar 

  180. A.A. Roller, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler: Non-Intrusive temperature measurements during the compression phase of a DI Diesel engine, SAE Techn. Paper Ser. 952461 (1995)

    Google Scholar 

  181. M.C. Drake, T.D. Fransler, D.T. French: Crevice flow and combustion visualization in a direct-injection spark-ignition engine using laser imaging techniques, SAE Techn. Paper Ser. 952454 (1995)

    Google Scholar 

  182. J.E. Dec, J.O. Keller: High speed thermometry using two-line atomic fluorescence, Proc. Combust. Inst. 21, 1737–1745 (1986)

    Google Scholar 

  183. C.F. Kaminski, J. Engström, M. Aldén: Quasi-instantaneous two-dimensional temperature measurements in a spark ignition enginge using two-line atomic fluorescence, Proc. Combust. Inst. 27, 85–93 (1998)

    Google Scholar 

  184. B.K. McMillin, J.L. Palmer, R.K. Hanson: Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow, Appl. Opt. 32, 7532–7545 (1993)

    Google Scholar 

  185. W.G. Bessler, C. Schulz: Quantitative multi-line NO-LIF temperature imaging, Appl. Phys. B 78, 519–533 (2004)

    Google Scholar 

  186. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames: III. Comparison of A-X strategies, Appl. Opt. 42, 4922–4936 (2003)

    Google Scholar 

  187. C. Orlemann, C. Schulz, J. Wolfrum: NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures, Chem. Phys. Lett. 307, 15–20 (1999)

    Google Scholar 

  188. N. Dam, R.J.H. Klein-Douwel, N. Sijstema, J. ter Meulen: Nitirc oxide flow tagging in unseeded air, Opt. Lett. 26, 36–38 (2001)

    Google Scholar 

  189. M.P. Lee, R.K. Hanson: Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm, J. Quant. Spectros. Radiat. Transfer 36, 425–440 (1986)

    Google Scholar 

  190. B. Hiller, R. Hanson: Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gaseous flows, Exp. Fluids 10, 1–11 (1990)

    Google Scholar 

  191. K. Greenough, A. Duncan: The fluorescence of sulfur dioxide, J. Am. Chem. Soc. 83, 555–560 (1961)

    Google Scholar 

  192. H. Mettee: Fluorescence and phosphorescence of SO2 vapor, J. Chem. Phys. 49, 1784–1793 (1968)

    Google Scholar 

  193. S.J. Strickler, D. Howell: Luminescence and radiations transitions in sulfur dioxide gas, J. Chem. Phys. 49, 1947–1951 (1968)

    Google Scholar 

  194. V. Sick: Exhaust-gas imaging via planar laser-induced fluorescence of sulfur dioxide, Appl. Phys. B 74, 461–463 (2002)

    Google Scholar 

  195. T. Rao, S. Collier, J. Calvert: Primary photophysical processes in the photochemistry of sulfur dioxide at 2875 Å, J. Am. Chem. Soc. 91, 1609–1615 (1969)

    Google Scholar 

  196. T. Rao, S. Collier, J.G. Calvert: The quenching reactions of the first excited singlet and triplet states of sulfur dioxide with oxygen and carbon dioxide, J. Am. Chem. Soc. 91, 1616–1621 (1969)

    Google Scholar 

  197. R. Caton, A. Duncan: Lifetime of the lowest triplet state of sulfur dioxide, J. Am. Chem. Soc. 90, 1945–1949 (1968)

    Google Scholar 

  198. A. Lozano: Laser-excited luminescent tracers for planar concentration measurements in gaseous jets, Ph.D. Thesis (Stanford University, Stanford 1992)

    Google Scholar 

  199. H. Krämer, S. Einecke, C. Schulz, V. Sick, S.R. Nattrass, J.S. Kitching: Simultaneous mapping of the distribution of different fuel volatility classes using tracer-LIF and NIR tomography in an IC engine, SAE Transactions, J. Fuels Lubricants 107, 1048–1059 (1998)

    Google Scholar 

  200. D. Han, R.R. Steeper: An LIF equivalence ratio imaging technique for multicomponent fuels in an IC engine, Proc. Combust. Inst 29, 727–734 (2002)

    Google Scholar 

  201. M.-T. Lin, V. Sick: Mixture evaporation characteristics prediction for LIF measurements using PSRK (Predictive Soave-Redlich-Kwong) equation of state, SAE Transactions, J. Fuels Lubricants 111, 1490–1499 (2002)

    Google Scholar 

  202. M.-T. Lin, V. Sick: Is toluene a suitable LIF tracer for fuel film measurements?, SAE Techn. Paper Ser. 2004-01-1355 (2004)

    Google Scholar 

  203. J. F. Le Coz, C. Catalano, T. Baritaud: Application of laser-induced fluorescence for measuring the thickness of liquid films on transparent walls. In: 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics II (Lisbon 1994)

    Google Scholar 

  204. T. Fansler, D. French, M.C. Drake: Fuel Distributions in a Firing Direct-injection Spark-ignition Engine Using Laser-Induced Fluorescence Imaging, SAE Techn. Paper Ser. 950110 (1995)

    Google Scholar 

  205. D. A. Greenhalgh, D. F. Bryce, R. D. Lockett, and S. C. Harding: Development of planar laser induced fluorescence for fuel: Application to gas turbine combustion. In: AGARD PEP Symposium on Advanced non-intrusive instrumentation for propulsion engines (Brussels 1997)

    Google Scholar 

  206. W. Hentschel, B. Block, T. Hovestadt, H. Meyer, G. Ohmstede, V. Richter, B. Stiebels, A. Winkler: Optical diagnostics and CFD-simulations to support the combustion process development of the Volkswagen FSI direct injection gasoline engine, SAE Techn. Paper Ser. 2001-01-3648 (2001)

    Google Scholar 

  207. J. Reboux, D. Puecheberty: A new approach of PLIF applied to fuel/air ratio measurement in the compressive stroke of an optical SI engine, SAE Techn. Paper Ser. 941988 (1994)

    Google Scholar 

  208. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz: Oxygen quenching of toluene fluorescence at elevated temperatures, Appl. Phys. B 80, 777–784 (2005)

    Google Scholar 

  209. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz: Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions, Proc. Combust. Inst. 30, 1545–1553 (2005)

    Google Scholar 

  210. S.A. Kaiser, M.B. Long: The effect of temperature and quenching on laser-induced fluorescence of naphtalenes as JP-8 tracers. In: Chemical and Physical Processes in Combustion – Technical Meeting of the Eastern States Section of the Combustion Institute (Pennsylvania State University, University Park 2003)

    Google Scholar 

  211. L.A. Melton: Spectrally separated fluorescence emissions for Diesel fuel droplets and vapor, Appl. Opt. 22, 2224–2226 (1983)

    Google Scholar 

  212. A. Lozano, B. Yip, R.K. Hanson: Acetone: A tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence, Exp. Fluids 13, 369–376 (1992)

    Google Scholar 

  213. F. Großmann, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum: Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone, Appl. Phys. B 62, 249–253 (1996)

    Google Scholar 

  214. L. Yuen, J. Peters, R. Lucht: Pressure dependence of laser-induced fluorescence from acetone, Appl. Opt. 36, 3271–3277 (1997)

    Google Scholar 

  215. F. Ossler, M. Alden: Measurements of picosecond laser-induced fluorescence from gas-phase 3-pentanone and acetone: Implications to combustion diagnostics, Appl. Phys. B 64, 493–502 (1997)

    Google Scholar 

  216. J.D. Koch, R.K. Hanson: Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications, Appl. Phys. B 76, 319–324 (2003)

    Google Scholar 

  217. J.B. Gandhi, P.G. Felton: On the fluorescent behavior of ketones at high temperatures, Exp. Fluids 21, 143–144 (1996)

    Google Scholar 

  218. J.D. Koch, R.K. Hanson: Ketone photophysics for quantitative PLIF imaging, AIAA paper 2001-0413 (2001)

    Google Scholar 

  219. N.P. Tait, D.A. Greenhalgh: 2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion, Proc. Combust. Inst. 24, 1621–1628 (1992)

    Google Scholar 

  220. D. Wolff, H. Schlüter, V. Beushausen, P. Andresen: Quantitative determination of fule air mixture distributions in an internal combustion engine using PLIF of acetone, Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993)

    Google Scholar 

  221. M. Berckmuller, N. Tait, R. Lockett, D. Greenhalgh: In-cylinder crank-angle-resolved imaging of fuel concentration in a firing spark-ignition engine using planar laser-induced fluorescence, Proc. Combust. Inst. 25, 151–156 (1994)

    Google Scholar 

  222. M. Dawson, S. Hochgreb: Liquid Fuel Visualization Using Laser-Induced Fluorescence During Cold Start, SAE Techn. Paper Ser. 982466 (1998)

    Google Scholar 

  223. R.M. Green, L.D. Cloutman: Planar LIF observations of unburned fuel escaping the upper ring-land crevice in an SI engine, SAE Techn. Paper Ser. 970823 (1997)

    Google Scholar 

  224. R. Bryant, J.F. Driscoll: Acetone laser induced fluorescence for low pressure, low temperature flow visualization, Exp. Fluids 28, 417–476 (2000)

    Google Scholar 

  225. H. Neij, B. Johansson, M. Aldén: Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines, Combust. Flame 99, 449–457 (1994)

    Google Scholar 

  226. A. Arnold, A. Buschmann, B. Cousyn, M. Decker, V. Sick, F. Vannobel, J. Wolfrum: Simultaneous imaging of fuel and hydroxyl radicals in an in-line four cylinder SI engine, SAE Trans. 102, 1–9 (1993)

    Google Scholar 

  227. A. Arnold, H. Becker, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister: Flame front imaging in an internal-combustion engine simulator by laser-induced fluorescence of acetaldehyde, Opt. Lett. 15, 831–833 (1990)

    Google Scholar 

  228. J.C. Swindal, D.P. Dragonetti, R.T. Hahn, P.A. Furman, W.P. Acker: In-cylinder charge homogeneity during cold-start studied with fluorescent tracers simulating different fuel distillation temperatures, SAE Techn. Paper Ser. 950106 (1995)

    Google Scholar 

  229. D.A. Hansen, E.K.C. Lee: Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes, J. Chem. Phys. 62, 3272–3277 (1975)

    Google Scholar 

  230. D.A. Hansen, E.K. Lee: Radiative and nonradiative transistions in the first excited singlet state of symmetrical methyl-substituted acetones, J. Chem. Phys. 62, 183–189 (1975)

    Google Scholar 

  231. A. Gandini, K. Kutschke: Primary process in photolysis of hexafluoroacetone vapour, 2. Fluorescence and phosphorescence, Proc. R. Soc. London Ser. A 306, 511 (1968)

    Google Scholar 

  232. A. Gandini, K.O. Kutschke: The effect of mercury on the triplet state of hexafluoroacetone, Ber. Bunsenges. Phys. Chem 72, 296–301 (1968)

    Google Scholar 

  233. H. Okabe, W.A. Noyes: The relative intensities of fluorescence and phosphorescence in biacetyl vapor, J. Am. Chem. Soc. 79, 810–806 (1957)

    Google Scholar 

  234. H.W. Sidebottom, C.C. Badcock, J.G. Calvert, B.R. Rabe, E.K. Damon: Lifetime studies of the biacetyl excited singlet and triplet states in the gas phase at 25°C, J. Am. Chem. Soc. 94, 13–19 (1972)

    Google Scholar 

  235. J.B. Liu, Q. Pan, C.S. Liu, J.R. Shi: Principles of flow field diagnostics by laser-induced biacetyl phosphorescence, Exp. Fluids 6, 505–513 (1988)

    Google Scholar 

  236. P. Pringsheim: Fluorescence and Phosphorescence (Interscience, New York 1949)

    Google Scholar 

  237. T. Itoh, A. Kakuho, H. Hishinuma, T. Urushihara, Y. Takagi, K. Horie, M. Asano, E. Ogata, T. Yamashita: Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence (Nissan Motor Co./University of Tokyo, Tokyo 1995)

    Google Scholar 

  238. P.G. Felton, F.V. Bracco, M.E.A. Bardsley: On the quantitative application of exciplex fluorescence to engine sprays, SAE Techn. Paper Ser. 930870 (1993)

    Google Scholar 

  239. A.P. Fröba, F. Rabenstein, K.U. Münch, A. Leipertz: Mixture of triethylamine and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines, Combust. Flame 112, 199–209 (1998)

    Google Scholar 

  240. J.B. Ghandhi, P.G. Felton, D.F. Gajdezko, F.V. Bracco: Investigation of the fuel distribution in a two-stroke engine with an air-assisted injector, SAE Techn. Paper Ser. 940394 (1994)

    Google Scholar 

  241. M. Richter, B. Axelsson, K. Nyholm, M. Aldén: Real-time calibration of planar laser-induced fluorescence air-fuel ratio measurements in combustion environments using in situ Raman scattering, Proc. Combust. Inst 27, 51–57 (1998)

    Google Scholar 

  242. D. Frieden, V. Sick, J. Gronki, C. Schulz: Quantitative oxygen imaging in an engine, Appl. Phys. B 75, 137–141 (2002)

    Google Scholar 

  243. J.C. Sacadura, L. Robin, F. Dionnet, D. Gervais, P. Gastaldi, A. Ahmed: Experimental investigation of an optical direct injection SI engine using FARLIF, SAE Techn. Paper Ser. 2000-01-1794 (2000)

    Google Scholar 

  244. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz: Absorption and fluorescence of toluene vapor at elevated temperatures, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004)

    Google Scholar 

  245. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz: Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions, Proc. Combust. Inst. 30, 1545–1553 (2005)

    Google Scholar 

  246. W. Koban, C. Schulz: Toluene as a tracer for fuel, temperature and oxygen concentrations, SAE Techn. Paper Ser. 2005-01-2091 (2005)

    Google Scholar 

  247. M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, W. Hentschel: Spatially resolved air/fuel ratio and residual gas measurements by sponaneous Raman scattering in a firing direct injection fasoline engine, SAE Techn. Paper Ser. 2000-01-1795 (2000)

    Google Scholar 

  248. B. Mewes, G. Bauer, D. Brüggemann: Fuel vapor measurements by linear Raman spectroscopy using spectral discriminattion from droplet interferences, Appl. Opt. 38, 1040–1045 (1999)

    Google Scholar 

  249. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel: Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: Spray flame and four-cylinder in-line engine, Appl. Phys. B. 58, 333–342 (1994)

    Google Scholar 

  250. R. A. L. Tolboom, N. M. Sijtsema, N. J. Dam, J. J. t. Meulen, J. M. Mooij, J. D. M. Maassen: 2D stoichiometries from snapshot Raman measurements, in 40th AIAA Aerospace Sciences Meeting. AIAA paper 2002-0400

    Google Scholar 

  251. D.C. Kyritsis, P.G. Felton, F.V. Bracco: On the feasibility of quantitative, single-shot, spontaneous Raman imaging in an optically accessible engine cylinder, SAE Techn. Paper Ser. 1999-01-3537 (1999)

    Google Scholar 

  252. D. Geyer: 1D Raman/Rayleigh experiments in a turbulent opposed jet, PhD Thesis (TU Darmstadt, Darmstadt 2004)

    Google Scholar 

  253. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly: Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine, Proc. Combust. Inst. 26, 2597–2604 (1996)

    Google Scholar 

  254. J. Engström, J. Nygren, M. Aldén, C.F. Kaminski: Two-line atomic fluorescence as a temperature probe for highly sooting flames, Opt. Lett. 25, 1469–1471 (2000)

    Google Scholar 

  255. A. Arnold, B. Lange, T. Bouché, Z. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy, Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992)

    Google Scholar 

  256. M.C. Thurber, F. Griseh, R.K. Hanson: Temperature imaging with single- and dual wavelength acetone planar laser-induced fluorescence, Opt. Lett. 22, 251–253 (1997)

    Google Scholar 

  257. N.P. Tait, D.A. Greenhalgh: PLIF imaging of fuel fraction in practical devices and LII imaging of soot, Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993)

    Google Scholar 

  258. J. Kazenwadel, W. Koban, T. Kunzelmann, C. Schulz: Fluorescence imaging of natural gas/air mixing without tracers added, Chem. Phys. Lett. 345, 259–264 (2001)

    Google Scholar 

  259. W. Koban, C. Schulz: FAR-LIF: Myth and Reality. In: European Combustion Meeting (The Combustion Institute, Louvain-la-Neuve 2005)

    Google Scholar 

  260. K. Kikuchi, C. Sato, M. Watabe, H. Ikeda, Y. Takahashi, T. Miyashi: New aspects on fluorescence quenching by molecular oxygen, J. Am. Chem. Soc. 115, 5180–5184 (1993)

    Google Scholar 

  261. C. Schulz, J.B. Jeffries, D.F. Davidson, J.D. Koch, J. Wolfrum, R.K. Hanson: Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications, Proc. Combust. Inst. 29, 2725–2742 (2002)

    Google Scholar 

  262. C.T. Bowman: Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation, Proc. Combust. Inst. 24, 859–878 (1994)

    Google Scholar 

  263. A.M. Wodtke, M. Huwel, H. Schlüter, G. Meijer, P. Andresen, H. Voges: High-sensitivity detection of NO in a flame using a tunable ArF laser, Opt. Lett. 13, 910–912 (1988)

    Google Scholar 

  264. C. Schulz, B. Yip, V. Sick, J. Wolfrum: A laser-induced fluorescence scheme for imaging nitric oxide in engines, Chem. Phys. Lett. 242, 259–264 (1995)

    Google Scholar 

  265. M.D. DiRosa, K.G. Klavuhn, R.K. Hanson: LIF spectroscopy of NO and O2 in high-pressure flames, Comb. Sci. Tech. 118, 257–283 (1996)

    Google Scholar 

  266. W.P. Partridge Jr., M.S. Klassen, D.D. Thomsen, N.M. Laurendeau: Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection, Appl. Opt. 34, 4890–4904 (1996)

    Google Scholar 

  267. P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps: Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0,1) excitation, SAE Techn. Paper Ser. 2001-01-1926 (2001)

    Google Scholar 

  268. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0,1) excitation. In: Proc. Western States Section of the Combustion Institute Spring Meeting (The Combustion Institute, Oakland 2001)

    Google Scholar 

  269. C. Schulz, J.D. Koch, D.F. Davidson, J.B. Jeffries, R.K. Hanson: Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K, Chem. Phys. Lett. 355, 82–88 (2002)

    Google Scholar 

  270. F. Hildenbrand, C. Schulz: Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines, Appl. Phys. B 73, 165–172 (2001)

    Google Scholar 

  271. A.O. Vyrodow, J. Heinze, M. Dillmann, U.E. Meier, W. Stricker: Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH4/air flames, Appl. Phys. B. 61, 409–414 (1995)

    Google Scholar 

  272. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly: Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine, SAE Techn. Paper Ser. 952462 (1995)

    Google Scholar 

  273. J.B. Jeffries, C. Schulz, D.W. Mattison, M. Oehlschlaeger, W.G. Bessler, T. Lee, D.F. Davidson, R.K. Hanson: UV absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications, Proc. Combust. Inst. 30, 1591–1599 (2005)

    Google Scholar 

  274. C. Schulz, V. Sick, J. Heinze, W. Stricker: Laser-induced fluorescence detection of nitric oxide in high-pressure flames using A-X(0,2) excitation, Appl. Opt. 36, 3227–3232 (1997)

    Google Scholar 

  275. F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin: In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation, SAE Techn. Paper Ser. 1999-01-3545 (1999)

    Google Scholar 

  276. M. Hofmann, H. Kronemayer, B.F. Kock, H. Jander, C. Schulz: Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures. In: European Combustion Meeting (The Combustion Institute, Louvain-la-Neuve 2005)

    Google Scholar 

  277. W.G. Bessler, C. Schulz, T. Lee, D.I. Shin, M. Hofmann, J.B. Jeffries, J. Wolfrum, R.K. Hanson: Quantitative NO-LIF imaging in high-pressure flames, Appl. Phys. B 75, 97–102 (2002)

    Google Scholar 

  278. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, R.K. Hanson: Quantitative temperature measurements in high-pressure flames with multi-line nitric oxide (NO)-LIF thermometry. In: 4th Joint Meeting of the U.S. Sections of the Combustion Institute (Drexel University, Philadelphia 2005)

    Google Scholar 

  279. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation, Appl. Opt. 41, 3547–3557 (2002)

    Google Scholar 

  280. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation, Appl. Opt. 42, 2031–2042 (2003)

    Google Scholar 

  281. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily: A versatile modeling tool for nitric oxide LIF spectra. In: 3rd Joint Meeting of the US Sections of the Combustion Institute (The Combustion Institute, Chicago 2003)

    Google Scholar 

  282. M. Tamura, J. Luque, J.E. Harrington, P.A. Berg, G.P. Smith, J.B. Jeffries, D.R. Crosley: Laser-induced fluorescence of seeded nitric oxide as a flame thermometer, Appl. Phys. B 66, 503–510 (1998)

    Google Scholar 

  283. W. Bessler, F. Hildenbrand, C. Schulz: Vibrational temperature imaging using two-line laser-induced fluorescence of seeded NO. In: Laser Applications to Chemical and environmental analysis, OSA Technical Digest Series, Vol. 3 (Opt. Soc. Am., Washington 2000) pp. 149–151

    Google Scholar 

  284. R. Cattolica: OH rotational temperature from two-line laser-excited fluorescence, Appl. Opt. 20, 1156–1166 (1981)

    Google Scholar 

  285. J.W. Daily, W.G. Bessler, C. Schulz, V. Sick: Role of non-stationary collisional dynamics in determining nitric oxide LIF spectra, AIAA 2004-0389 (2004)

    Google Scholar 

  286. T. Lee, W.G. Bessler, C. Schulz, M. Patel, J.B. Jeffries, R.K. Hanson: UV planar laser-induced fluorescence imaging of hot carbon dioxide in a high-pressure flame, Appl. Phys. B 79, 427–430 (2004)

    Google Scholar 

  287. H. Kronemayer, W. Bessler, C. Schulz: Gas-phase temperature measurements in evaporating sprays and spray flames based on NO multiline LIF, Appl. Phys. B 81, 1071–1074 (2005)

    Google Scholar 

  288. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries: Quantitative temperature measurements in high-pressure flames with multi-line nitric oxide (NO)-LIF thermometry, Appl. Opt. 31, 6718–6728 (2005)

    Google Scholar 

  289. I. Düwel, H.-W. Ge, H. Kronemayer, R.W. Dibble: Experimental and numerical characterization of a turbulent spray flame, Proc. Combust. Inst. 31, 2247–2255 (2007)

    Google Scholar 

  290. W.G. Bessler, C. Schulz, M. Hartmann, M. Schenk: Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation, SAE Techn. Paper Ser. 2001-01-1978 (2001)

    Google Scholar 

  291. C. Schulz, J. Wolfrum, V. Sick: Comparative study of experimental and numerical NO profiles in SI combustion, Proc. Combust. Inst. 27, 2077–2084 (1998)

    Google Scholar 

  292. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H.G. Wagner: Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames, in VDI Flammentag Dresden, VDI Berichte 1492, 269–274 (1999)

    Google Scholar 

  293. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner: Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems, Proc. Combust. Inst. 28, 1137–1144 (2000)

    Google Scholar 

  294. F. Hildenbrand, C. Schulz, V. Sick, G. Josefsson, I. Magnusson, Ö. Andersson, M. Aldén: Laser spectroscopic invesitigation of flow fields and NO-formation in a realistic SI engine, SAE Techn. Paper Ser. 980148 (1998)

    Google Scholar 

  295. A. DʼAlessio: Laser light scattering and fluorescence diagnostics of rich flames produced by gascons and liquid fuels. In: Particulate carbon: Formation during combustion, ed. by D.C. Siegla, G.W. Smith (Plenum, New York 1981) p. 207

    Google Scholar 

  296. R.W. Weeks, W.W. Duley: Aerosol-particle sizes from light emission during excitation by TEA CO2 laser pulses, J. Appl. Phys 45, 4661–4662 (1973)

    Google Scholar 

  297. A.C. Eckbreth: Effects of laser-modulated particle incandescence on Raman scattering diagnostics, J. Appl. Phys. 48, 4473–4479 (1977)

    Google Scholar 

  298. L.A. Melton: Soot diagnostics based on laser heating, Appl. Opt. 23, 2201–2208 (1984)

    Google Scholar 

  299. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro: Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence, Appl. Opt. 34, 7083–7091 (1995)

    Google Scholar 

  300. D.J. Bryce, N. Ladommatos, H. Zhao: Quantitative investigation of soot distribution by laser-induced incandescence, Appl. Opt. 39, 5012–5022 (2000)

    Google Scholar 

  301. C.R. Shaddix, K.C. Smyth: Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames, Combust. Flame 107, 418–452 (1996)

    Google Scholar 

  302. P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix: Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame, Appl. Opt. 40, 2443–2452 (2001)

    Google Scholar 

  303. B. Quay, T.-W. Lee, T. Ni, R.J. Santoro: Spatially resolved measurements of soot volume fraction using laser-induced incandescence, Combust. Flame 97, 384–392 (1994)

    Google Scholar 

  304. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn: Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames, Proc. Combust. Inst. 26, 2387–2395 (1996)

    Google Scholar 

  305. B. Axelsson, R. Collin, P.-E. Bengtsson: Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration, Appl. Phys. B 72, 367–372 (2001)

    Google Scholar 

  306. H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn: Two-dimensional imaging of soot volume fractions; particle number densities; and particle radii in laminar and turbulent diffusion flames, Proc. Combust. Inst. 27, 1613–1621 (1998)

    Google Scholar 

  307. T.R. Meyer, S. Roy, V.M. Belovich, E. Corporan, J.R. Gord: Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames, Appl. Opt. 44, 445–454 (2005)

    Google Scholar 

  308. H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz: Progress in characterization of soot formation by optical methods, Phys. Chem. Chem. Phys. 4, 3780–3793 (2002)

    Google Scholar 

  309. S. Will, S. Schraml, A. Leipertz: Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence, Proc. Combust. Inst. 26, 2277–2284 (1996)

    Google Scholar 

  310. S. Will, S. Schraml, K. Bader, A. Leipertz: Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence, Appl. Opt. 37, 5647–5658 (1998)

    Google Scholar 

  311. B. Axelsson, R. Collin, P.-E. Bengtsson: Laser-induced incandescence for soot particle size measurements in premixed flat flames, Appl. Opt. 39, 3683–3690 (2000)

    Google Scholar 

  312. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn: Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements, Appl. Opt. 42, 2021–2030 (2003)

    Google Scholar 

  313. D. Woiki, A. Giesen, P. Roth: Time-resolved laser-induced incandescence for soot particle sizing during acetylene pyrolysis behind shock waves, Proc. Combust. Inst. 28, 2531–2537 (2000)

    Google Scholar 

  314. R.L. Vander Wal, T.M. Ticich, A.B. Stephens: Can soot primary particle size be determined using laser-induced incandescence?, Combust. Flame 116, 291–296 (1999)

    Google Scholar 

  315. B.F. Kock, T. Eckhardt, P. Roth: In-cylinder sizing of Diesel particles by time-resolved laser-induced incandescence (TR-LII), Proc. Combust. Inst. 29, 2775–2781 (2002)

    Google Scholar 

  316. D.R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D.J. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder: In-situ real-time characterization of particulate emissions from a Diesel engine exhaust by laser-induced incandescence, SAE Techn. Paper Ser. 2000-01-1994 (2000)

    Google Scholar 

  317. S. Schraml, S. Will, A. Leipertz: Performance characteristics of TIRE-LII soot diagnostics in exhaust gases of Diesel engines, SAE Techn. Paper Ser. 2000-01-2002 (2000)

    Google Scholar 

  318. R.L. Vander Wal, T.M. Ticich, J.R. West Jr.: Laser-induced incandescence applied to metal nanostructures, Appl. Opt. 38, 5867–5879 (1999)

    Google Scholar 

  319. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth: Comparison of LII and TEM sizing during synthesis of iron particle chains, Proc. Combust. Inst. 30, 1689–1697 (2005)

    Google Scholar 

  320. T. Lehre, R. Suntz, H. Bockhorn: Time-resolved two-color LII: size distributions of nano-particles from gas-to-particle synthesis, Proc. Combust. Inst. 30, 2585–2593 (2005)

    Google Scholar 

  321. R.L. Vander Wal: Laser-induced incandescence: Detection issues, Appl. Opt. 35, 6548–6559 (1996)

    Google Scholar 

  322. B. Mewes, J.M. Seitzman: Soot volume fraction and particle size measurements with laser-induced incandescence, Appl. Opt. 36, 709–717 (1997)

    Google Scholar 

  323. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander: Laser-induced incandescence (LII) for soot diagnostics at high pressure, Appl. Opt. 42, 2052–2062 (2003)

    Google Scholar 

  324. P.-E. Bengtsson, M. Aldén: Soot-visualization strategies using laser techniques, Appl. Phys. B 60, 51–59 (1995)

    Google Scholar 

  325. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux: Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames, Appl. Phys. B 78, 485–492 (2004)

    Google Scholar 

  326. K.C. Smyth, C.R. Shaddix: The elusive history of m = 1.57 - 0.56i for the refractive index of soot, Combust. Flame 107, 314–320 (1996)

    Google Scholar 

  327. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo: A calibration-independent LII technique for soot measurement by detecting abolute light intensity, Appl. Opt. 44, 6773–6785 (2005)

    Google Scholar 

  328. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bongie, R. Suntz, G. Smallwood: Laser-induced incandescence: Recent trends and current questions, Appl. Phys. B 83, 333–354 (2006)

    Google Scholar 

  329. D. R. Snelling, F. Liu, G. J. Smallwood, L. Ö. Gülder: Evaluation of the nanoscale heat and mass transfer model of LII: Prediction of the excitation intensity. In: 34th National Heat Transfer Conference (Pittsburgh 2000)

    Google Scholar 

  330. B.F. Kock, B. Tribalet, C. Schulz, P. Roth: Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine, Combust. Flame 147, 79–92 (2006)

    Google Scholar 

  331. D.L. Hofeldt: Real-time soot concentration measurement technique for engine exhaust streams, SAE Techn. Paper Ser. 930079 (1993)

    Google Scholar 

  332. H. Bladh, P.-E. Bengtsson: Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat and mass-transfer model, Appl. Phys. B 78, 241–248 (2004)

    Google Scholar 

  333. H.A. Michelsen: Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles, J. Chem. Phys. 118, 7012–7045 (2003)

    Google Scholar 

  334. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder: Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combust. Flame 136, 180–190 (2004)

    Google Scholar 

  335. H.A. Michelsen, F. Lin, B.F. Kock, H. Bladh, A. Boiarcinc, M. Charwoth, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foncher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, S. Suntz: Modeling laser-induced incandescence of soot: A summary and comparison of LII models, Appl. Phys. B 87, 503–521 (2007)

    Google Scholar 

  336. M. Hofmann, B. Kock, C. Schulz: A web-based interface for modeling laser-induced incandescence (LIISim). In: Proceedings of the European Combustion Meeting, Chania, Greece, 2007 The Combustion Institute

    Google Scholar 

  337. R.W. Dibble, R.E. Hollenbach: Laser Rayleigh thermometry in turbulent flames, Proc. Combust. Inst. 18, 1489–1499 (1981)

    Google Scholar 

  338. C. Espey, J.E. Dec, T.A. Litzinger, D.A. Santavicca: Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a Diesel jet, Combust. Flame 109, 65–86 (1997)

    Google Scholar 

  339. Ö. Andersson, R. Collin, M. Aldén, R. Egnell: Quantitative imaging of equivalence ratios in DME sprays using a chemically preheated combustion vessel, SAE Techn. Paper Ser. 2000-01-2785 (2000)

    Google Scholar 

  340. C. Schulz, J. Gronki, S. Andersson: Multi-species laser-based imaging measurements in a Diesel spray, SAE Techn. Paper Ser. 2004-01-1917 (2004)

    Google Scholar 

  341. S. Vogel, C. Hasse, J. Gronki, S. Andersson, N. Peters, J. Wolfrum, C. Schulz: Numerical simulation and laser-based imaging of mixture formation, ignition and soot formation in a Diesel spray, Proc. Combust. Inst. 30, 2029–2036 (2005)

    Google Scholar 

  342. A.I. Vogel: Physical properties and chemical constitution of aliphatic hydrocarbons, J. Chem. Soc. 9, 133–142 (1946)

    Google Scholar 

  343. R.C. Weast: Handbook of Chemistry and Physics, 54th edn. (CRC, Cleveland 1973)

    Google Scholar 

  344. Landolt-Börnstein: Eigenschaften der Materie in ihren Aggregatzuständen. Tabellen (Springer, Berlin, Heidelberg 1962)

    Google Scholar 

  345. J.R. Partington: An Advanced Treatise on Physical Chemistry, Vol. 9 (Longmans, Green, London 1953)

    Google Scholar 

  346. W.C. Gardiner, Y. Hidaka, T. Tanzawa: Refractivity of combustion gases, Combust. Flame 40, 213–219 (1981)

    Google Scholar 

  347. D. Hoffman, K.-U. Münch, A. Leipertz: Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering, Opt. Lett. 21, 525–527 (1996)

    Google Scholar 

  348. F. Beyrau, A. Bruer, T. Seeger, A. Leipertz: Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering, Opt. Lett. 29, 247–249 (2004)

    Google Scholar 

  349. D. Klick, K.A. Marko, L. Rimai: Broadband single-pulse CARS spectra in a fired internal combustion engine, Appl. Opt. 20, 1178–1185 (1981)

    Google Scholar 

  350. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum: Combustion at the focus: Laser diagnostics and control, in Proc. Combust. Inst. 30, 89–123 (2005)

    Google Scholar 

  351. P.T. Moseley, J.O.W. Norris, D.E. Williams: Techniques and Mechanisms in Gas Sensing (Adam Hilger, New York 1991)

    Google Scholar 

  352. V. Ebert, J. Wolfrum: Absorption Spectroscopy. In: Optical Measurements – Techniques and Applications, 2nd edn., ed. by F. Mayinger, O. Feldmann (Springer, Berlin, Heidelberg 2001) pp. 227–266

    Google Scholar 

  353. G. Herzberg: The Spectra and Structures of Simple Free Radicals: An Introduction to Molecular Spectroscopy (Dover, New York 1988)

    Google Scholar 

  354. G. Herzberg: Spectra of Diatomic Molecules, Vol. I, 2nd edn. (Krieger, Malobar, FL 1989)

    Google Scholar 

  355. G. Herzberg: Infrared and Raman Spectra of Polyatomic Molecules, Vol. II (Krieger, Malobar, FL 1991)

    Google Scholar 

  356. G. Herzberg: Electronic Spectra of Polyatomic Molecules, Vol. III (Krieger, Malobar, FL 1991)

    Google Scholar 

  357. J. Wolfrum, T. Dreier, V. Ebert, C. Schulz: Laser-based combustion diagnostics. In: Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester 2000) pp. 2118–2148

    Google Scholar 

  358. V. Ebert, R. Hemberger, W. Meienburg, J. Wolfrum: In-situ gas analysis with infrared lasers, Ber. Bunsenges. 97, 1527–1534 (1993)

    Google Scholar 

  359. R. Villarreal, P. Varghese: Frequency-resolved absorption tomography with tunable diode lasers, Appl. Opt. 44, 6786–6795 (2005)

    Google Scholar 

  360. V. Ebert, C. Schulz, H.R. Volpp, J. Wolfrum, P. Monkhouse: Laser diagnostics of combustion processes: from chemical dynamics to technical devices, Israel J. Chem. 39, 1–24 (1999)

    Google Scholar 

  361. V. Ebert, J. Fitzer, I. Gerstenberg, K.U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin: Simultaneous laser-based in situ detection of oxygen and water in a waste incinerator for active combustion control purposes, Proc. Combust. Inst. 27, 1301–1308 (1998)

    Google Scholar 

  362. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum: High sensitivity in-situ CO-detection in a 3 MW th rotary kiln for special waste incineration using new 2.3 μ m distributed feedback diode lasers, Proc. Combust. Inst. 30, 1611–1618 (2005)

    Google Scholar 

  363. H. Teichert, T. Fernholz, V. Ebert: Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers, Appl. Opt. 42, 2043–2051 (2003)

    Google Scholar 

  364. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz: Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant, Proc. Combust. Inst. 28, 423–430 (2000)

    Google Scholar 

  365. D.R. Herriott: Folded optical delay lines, Appl. Opt. 4, 883–889 (1965)

    Google Scholar 

  366. D.R. Herriott, H. Kogelnik, R. Kompfner: Off-axis paths in spherical mirror interferometers, Appl. Opt. 3, 523–526 (1964)

    Google Scholar 

  367. J.U. White: Long optical path of large aperture, J. Opt. Soc. Am. 32, 285–288 (1942)

    Google Scholar 

  368. J. White: Very long optical path in air, J. Opt. Soc. Am. 66, 411–416 (1976)

    Google Scholar 

  369. V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, U. Schurath: Fibre-coupled in-situ laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level, Tech. Mess. 72, 23–30 (2005)

    Google Scholar 

  370. W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, J.P. Burrows: Lightweight diode laser spectrometer CHILD (compact high-altitude in-situ laser diode) for balloonborne measurements of water vapor and methane, Appl. Opt. 44, 91–102 (2005)

    Google Scholar 

  371. H.E. Schlosser, J. Wolfrum, V. Ebert, B.A. Williams, R.S. Sheinson, J.W. Fleming: In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy, Proc. Combust. Inst. 29, 353–360 (2002)

    Google Scholar 

  372. L.F. Mollenauer, J.C. White: Tunable Lasers (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  373. F.K. Kneubühl, M.W. Sigrist: Laser (Teubner, Stuttgart 1991)

    Google Scholar 

  374. L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie: Continuous-wave operation of far-infrared quantum cascade lasers, Electron. Lett. 38, 1675–1676 (2002)

    Google Scholar 

  375. L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, E. Linfield: Loss-coupled distributed feedback far-infrared quantum cascade lasers, Electron. Lett. 41, 419–420 (2005)

    Google Scholar 

  376. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi: Terahertz semiconductor-heterostructure laser, Nature 417, 156–159 (2002)

    Google Scholar 

  377. T. Tsuboi, N. Arimitsu, D. Ping, J.M. Hartmann: Light absorption by hydrocarbon molecules at 3.392 μ m of He-Ne laser, Jpn. J. Appl. Phys. 24, 8–13 (1985)

    Google Scholar 

  378. W.G. Mallard, W.C. Gardiner: Absorption of the 3.39 μ m He-Ne laser line by methane from 300 to 2400 K, Quant. Spectrosc. Radiat. Transfer 20, 135–149 (1978)

    Google Scholar 

  379. R.K. Mongia, E. Tomita, F.K. Hsu, L. Talbot, R.W. Dibble: Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applicators to low NO x emissions in premixed gas turbines, Proc. Combust. Inst. 26, 2749–2755 (1996)

    Google Scholar 

  380. S.A. Trushin: Photoacoustic air pollution monitoring with an isotopic CO2 laser, Ber. Bunsenges. Phys. Chem. Chem. Phys. 96, 319–322 (1992)

    Google Scholar 

  381. P.K. Cheo, C. Zhiping, C. Li, Z. Yi: Applications of a tunable CO2 sideband laser for high-resolution spectroscopic measurements of atmospheric gases, Appl. Opt. 32, 836–841 (1993)

    Google Scholar 

  382. D.E. Cooper, T.F. Gallagher: Frequency modulation spectroscopy with a CO2 laser: results and implications for ultrasensitive point monitoring of the atmosphere, Appl. Opt. 24, 710–716 (1985)

    Google Scholar 

  383. W. Meienburg, H. Neckel, J. Wolfrum: In-situ measurement of ammonia concentration in industrial combustion systems, Proc. Combust. Inst. 23, 231–236 (1990)

    Google Scholar 

  384. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Köllner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schäfer, K.P. Schindler, V. Sick, R. Suntz, J. Wolfrum: Laser in-situ monitoring of combustion processes, Appl. Opt. 29, 4860–4872 (1990)

    Google Scholar 

  385. R. Hemberger, S. Muris, K.U. Pleban, J. Wolfrum, I.S. Zaslonko, P. Kilpinen, A.E.J. Akanetuk: An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons, Combust. Flame 99, 660–668 (1994)

    Google Scholar 

  386. P. Günter: Nonlinear Optical Effects and Materials, Springer Ser. Opt. Sci, Vol. 72 (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  387. J.A. Silver: Frequency modulation spectroscopy for trace species detection: Theory and comparison among experimental methods, Appl. Opt. 31, 707–717 (1992)

    Google Scholar 

  388. P. Vogel, V. Ebert: Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers, Appl. Phys. B 72, 127–135 (2001)

    Google Scholar 

  389. M. Tacke: Lead salt lasers. In: Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, ed. by M. Helm (Gordon+Breach, Amsterdam 2000) pp. 347–396

    Google Scholar 

  390. R. Grisar, G. Schmidke, M. Tacke, G. Restelli: Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht 1989)

    Google Scholar 

  391. R.T. Ku, J.O. Sample, E.D. Hinkley: Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system, Appl. Opt. 14, 854–861 (1975)

    Google Scholar 

  392. S.M. Schoenung, R.K. Hanson: CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques, Combust. Sci. Technol. 24, 227–237 (1981)

    Google Scholar 

  393. P.L. Varghese, R.K. Hanson: Collision width measurements of CO in combustion gases using a tunable diode laser, J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981)

    Google Scholar 

  394. R.K. Hanson: Absorption spectroscopy in sooting flames using a tunable diode laser, Appl. Opt. 19, 482–484 (1980)

    Google Scholar 

  395. M. Tacke, J.R. Meyer, A.R. Adams: Lead-salt lasers, Philos. T. Roy. Soc. A 359, 547–566 (2001)

    Google Scholar 

  396. P. Werle: Spectroscopic trace gas analysis using semiconductor diode lasers, Spectrochim. Acta A 52, 805–822 (1996)

    Google Scholar 

  397. J.H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh: Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame, Appl. Opt. 32, 6082–6089 (1993)

    Google Scholar 

  398. U. Gustafsson, G. Somesfalean, J. Alnis, S. Svanberg: Frequency-modulation spectroscopy with blue diode lasers, Appl. Opt. 39, 3774–3780 (2000)

    Google Scholar 

  399. C. Lin, M. Grau, O.D. and, M.-C. Amann: Low threshold room-temperature continuous-wave operation of 2.24-3.04 μ m GaInAsSb/AlGaAsSb quantum-well laser, Appl. Phys. Lett. 84, 5088–5090 (2004)

    Google Scholar 

  400. V. Ebert, C. Giesemann, J. Koeth, H. Teichert: New room-temperature 2.3 μ m DFB-diode lasers: First spectroscopic characterization and CO-detection. In: Laser Applications to Chemical and Environmental Analysis OSA TEchnical Digest Series (Opt. Soc. Am., Washington 2004), Paper TuF-98

    Google Scholar 

  401. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho: Quantum cascade laser, Science 264, 553–555 (1994)

    Google Scholar 

  402. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert: Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants, Appl. Phys. B 75, 237–247 (2002)

    Google Scholar 

  403. D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, H. Welling: External cavity laser diode with 40 nm continuous tuning range around 825 nm, Opt. Commun. 130, 81–84 (1996)

    Google Scholar 

  404. V. Ebert, H. Teichert, C. Giesemann, T. Fernholz, E. Schlosser, P. Strauch, H. Seifert, T. Kolb, J. Wolfrum: Rapid multi-parameter in-situ spectrometer for sensitive detection of CO, O2, H2O and temperature in industrial rotary kilns. In: 17. External TECFLAM Seminar Joint Research Project Combustion Control and Simulation, ed. by W. Meier (AG TECFLAM, Stuttgart 2003) pp. 122–149

    Google Scholar 

  405. A.R. Awtry, J.W. Fleming, V. Ebert: Simultaneous diode laser-based in-situ measurement of liquid water content and oxygen mole fraction in dense water mist environments, Opt. Lett. 31, 900–902 (2006)

    Google Scholar 

  406. T. Fernholz, H. Teichert, V. Ebert: Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions, Appl. Phys. B 75, 229–236 (2002)

    Google Scholar 

  407. V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin: Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes, Proc. Combust. Inst. 27, 1301–1308 (1998)

    Google Scholar 

  408. E. Schlosser, T. Fernholz, H. Teichert, V. Ebert: In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers, Spectrochim. Acta A 58, 2347–2359 (2002)

    Google Scholar 

  409. M. Grabrysch, C. Corsi, F.S. Pavone, M. Inguscio: Simultaneous detection of CO and CO2using a semiconductor DFB diode laser at 1.578 μ m, Appl. Phys. B 65, 75–79 (1997)

    Google Scholar 

  410. D.B. Oh, M.E. Paige, D.S. Bomse: Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers, Appl. Opt. 37, 2499–2501 (1998)

    Google Scholar 

  411. L.G. Blevins, B.W. Peterson: Obtaining and interpreting near-infrared wavelength modulation absorption signals from hot fire gases: Practical issues. In: Combustion Institute Technical Meeting Eastern States Section (Raleigh, NC 1999) pp. 85–88

    Google Scholar 

  412. L. G. Blevins, W. M. Pitts: Carbon monoxide measurement using a near-infrared tunable diode laser. In: Annual Conference on Fire Research: Book of Abstracts (1998) pp. 21-22

    Google Scholar 

  413. K. Muta, M. Tanoura, H. Honda: In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace. In: Proc. International Laser Sensing Symposium (Fukui 1999)

    Google Scholar 

  414. V. Ebert, K. U. Pleban, J. Wolfrum: In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy. In: Laser Applications to Chemical and Environmental Analysis, OSA Technical Digest Series (Opt. Soc. Am., Washington, 1998) p. 206-209

    Google Scholar 

  415. J.J. Nikkari, J.M. Di Iorio, M.J. Thomson: In situ combustion measurements of CO, H2O and temperature with a 1.58 μ m diode laser an two-tone frequency modulation, Appl. Opt. 41, 446–452 (2002)

    Google Scholar 

  416. M.G. Allen, B.L. Upschulte, D.M. Sonnenfroh, W.J. Kessler, P.A. Mulhall: Overview of diode laser measurement in large-scale test facilities, Proc. Aerodynamic Measurement Technology and Ground Testing Conference 21, 2452–2454 (2000)

    Google Scholar 

  417. D.M. Sonnenfroh, M.G. Allen: Observation of CO and CO2 Absorption near 1.57 μ m with an external-cavity diode laser, Appl. Opt. 36, 3298–3300 (1997)

    Google Scholar 

  418. C.E. Wieman, L. Hollberg: Using diode lasers for atomic physics, Rev. Sci. Instrum. 62, 1–20 (1991)

    Google Scholar 

  419. J.C. Camparo: The diode laser in atomic physics, Contemp. Phys. 26, 443–477 (1985)

    Google Scholar 

  420. L.C. Philippe, R.K. Hanson: Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows, Appl. Opt. 32, 6090–6103 (1993)

    Google Scholar 

  421. S.T. Sanders, D.W. Mattison, L. Ma, J.B. Jeffries, R.K. Hanson: Wavelength-agile diode laser sensing strategies for monitoring gas properties in optically harsh flows: Application in cesium-seeded pulse detonation engine, Opt. Express 10, 505–514 (2002)

    Google Scholar 

  422. M.F. Miller, W.J. Kessler, M.G. Allen: Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets, Appl. Opt. 35, 4905–4912 (1996)

    Google Scholar 

  423. Z.C. Owens, D.W. Mattison, E.A. Barbour, C.I. Morris, R.K. Hanson: Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry, Proc. Combust. Inst. 30, 2791–2798 (2005)

    Google Scholar 

  424. E.R. Furlong, D.S. Baer, R.K. Hanson: Combustion control using a multiplexed diode-laser sensor system, Proc. Combust. Inst. 26, 2851–2858 (1996)

    Google Scholar 

  425. R.M. Mihalcea, D.S. Baer, R.K. Hanson: Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows, Appl. Opt. 36, 8745–8752 (1997)

    Google Scholar 

  426. R. M. Mihalcea, D. S. Baer, R. K. Hanson: Diode-laser absorption sensor system for combustion monitoring and control applications. In: AIAA Paper 97-3356 (1997)

    Google Scholar 

  427. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.J.M. Gopaul: Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements, Opt. Lett. 19, 1900–1902 (1994)

    Google Scholar 

  428. M.G. Allen: Diode laser absorption sensors for gas-dynamic and combustion flows, Meas. Sci. Technol. 9, 545–562 (1998)

    Google Scholar 

  429. D. Wandt, M. Laschek, A. Tünnermann, H. Welling: Continuously tunable external-cavity diode laser with a double-grating arrangement, Opt. Lett. 22, 390–392 (1997)

    Google Scholar 

  430. A.P. Larson, L. Sandström, S. Höjer, H. Ahlberg, B. Broberg: Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis, Opt. Eng. 36, 117–123 (1997)

    Google Scholar 

  431. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson: Diode Laser Sensors for Combustion Control. In: AIAA Paper 2003–1010 (2003)

    Google Scholar 

  432. E.R. Furlong, D.S. Baer, R.K. Hanson: Real-time adaptive combustion control using diode-laser absorption sensors, Proc. Combust. Inst. 27, 103–111 (1998)

    Google Scholar 

  433. E.R. Furlong, R.M. Mihalcea, M.E. Webber, D.S. Baer, T.P. Parr, R.K. Hanson: Diode-laser sensor system for closed-loop control of a 50-kW incinerator, AIAA Paper 97-2833 (1997)

    Google Scholar 

  434. L. Ma, S.T. Sanders, J.B. Jeffries, R.K. Hanson: Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor, Proc. Combust. Inst. 29, 161–168 (2002)

    Google Scholar 

  435. F. Schuler, F. Rampp, J. Martin, J. Wolfrum: TACCOS - a thermography-assisted combustion control system for waste incinerators, Combust. Flame 99, 431–439 (1994)

    Google Scholar 

  436. V. Ebert, J. Fitzer, I. Gerstenberg, H. Pitz, K.U. Pleban, J. Wolfrum, M. Jochem, J. Martin: Online monitoring of water vapour with a fiber coupled NIR-diode laser spectrometer, VDI Berichte 1366, 145–154 (1998)

    Google Scholar 

  437. J. T. C. Liu, J. B. Jeffries, R. K. Hanson: Diode laser absorption diagnostics for measurements in practical combustion flow fields. In: AIAA Paper 2003–4581 (2003)

    Google Scholar 

  438. F. Greger, K.T. Hartinger, P.B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn: In situ alkali concentration measurements in a pressurized fluidized bed coal combustor by excimer laser induced fragmentaiton fluorescence, Proc. Combust. Inst. 26, 3301–3307 (1996)

    Google Scholar 

  439. K.T. Hartinger, S. Nord, P.B. Monkhouse: Quenching of fluorescence from Na(32P) and K(42P) Atoms following photodissociation of NaCl and KCl at 193 nm, Appl. Phys. B 64, 363–367 (1997)

    Google Scholar 

  440. R.C. Oldenburg, S.L. Baughcum: Photofragment fluorescence as an analytical technique: application to gas-phase alkali chlorides, Anal. Chem. 58, 1430–1436 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christof Schulz Dr. , Andreas Dreizler Dr. , Volker Ebert Prof. or Jürgen Wolfrum Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Schulz, C., Dreizler, A., Ebert, V., Wolfrum, J. (2007). Combustion Diagnostics. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics