Skip to main content

Kinetics and Energetics in Nanolubrication

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 9956 Accesses

Abstract

In the 19th century, lubrication, one of humankind's oldest engineering disciplines, gained a theoretical base from Reynolds's classical hydrodynamic description that was unmatched by most of the theories developed in tribology to date. In the 20th century, however, increasing demands on lubricants shifted attention from bulk films to ultra-thin film lubrication. Finite-size limitations imposed constraints on the lubrication process that were not considered in the bulk phenomenological treatments introduced by Reynolds. At this point, as is common in many engineering applications, empiricism took over. Functional relationships derived from the classical theories were tweaked to accommodate the new situation of reduced scales by introducing effective or apparent properties.

With the inception of nanorheological tools of complementary nature in the later decades of the 20th century (e.g., the surface forces apparatus and scanning force microscopy), tribology entered the realm of nanoscience. Through an increasing confidence in experimental findings on the nanoscale, kinetic and energetic theories incorporated interfacial and molecular constraints.

The very fundamentals have been challenged in recent years. Researchers have realized that bulk perceptions, such as solid and liquid are defied on the nanoscale. The reduction in dimensionality of the nanoscale imposes constraints that bring into question the use of classical statistical mechanics of decoupled events. The diffusive description of lubrication is failing in a system that is thermodynamically not well-equilibrated. The challenge any nanotechnological endeavor encounters is the development of a theoretical framework based on an appropriate statistics. In tribology this is met with spectral descriptions of the dynamic sliding process. Statistical kernels are being developed for probability density functions to explain anomalous transport processes that involve long-range spatial or temporal correlations. With such theoretical developments founded in nanorheological experiments, a more realistic foundation will be laid to describe the behavior of lubricants in the confined geometries of the nanometer length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

PFPE:

perfluoropolyether

SFA:

surface force apparatus

SFM:

scanning force microscopy

References

  1. F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1951)

    Google Scholar 

  2. D. Tabor, R. H. S. Winterton: The direct measurement of normal and retarded van der Waals forces, Proc. R. Soc. Lond. A 312, 435–450 (1969)

    Article  CAS  Google Scholar 

  3. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  4. N. P. Petrov: Friction in Machines and the Effect of the Lubricant, Vol. 1 (Inzh. Zh. St. Petersburgo, St. Petersburg 1883) pp. 71–140

    Google Scholar 

  5. N. P. Petrov: Friction in Machines and the Effect of the Lubricant, Vol. 2 (Inzh. Zh. St. Petersburgo, St. Petersburg 1883) pp. 227–279

    Google Scholar 

  6. N. P. Petrov: Friction in Machines and the Effect of the Lubricant, Vol. 3 (Inzh. Zh. St. Petersburgo, St. Petersburg 1883) pp. 377–463

    Google Scholar 

  7. N. P. Petrov: Friction in Machines and the Effect of the Lubricant, Vol. 4 (Inzh. Zh. St. Petersburgo, St. Petersburg 1883) pp. 535–564

    Google Scholar 

  8. B. Tower: First report on friction experiments (friction of lubricated bearings), Proc. Inst. Mech. Eng., 632–659 (November 1883)

    Google Scholar 

  9. O. Reynolds: On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. Lond. 177, 157–234 (1886)

    Article  Google Scholar 

  10. J. P. Israelachvili, G. M. McGuiggan, M. Gee, A. Homola, M. Robbins, P. Thompson: Liquid dynamics in molecularly thin films, J. Phys. 2, 89–98 (1990)

    Google Scholar 

  11. W. B. Hardy, I. Doubleday: Boundary lubrication—The paraffin series, Proc. R. Soc. Lond. A 100, 550–574 (1922)

    Article  CAS  Google Scholar 

  12. A. Dorinson, K. C. Ludema: Mechanics and Chemistry in Lubrication (Elsevier, Amsterdam 1985)

    Google Scholar 

  13. B. J. Briscoe, D. C. B. Evans: The shear properties of Langmuir–Blodgett layers, Proc. R. Soc. Lond. A 380, 389–407 (1982)

    Article  CAS  Google Scholar 

  14. C. Buenviaje, S. Ge, M. Rafailovich, J. Sokolov, J. M. Drake, R. M. Overney: Confined flow in polymer films at interfaces, Langmuir 19, 6446–6450 (1999)

    Article  Google Scholar 

  15. S. Blunier, H. Zogg, A. N. Tiwari, R. M. Overney, H. Haefke, P. Buffat, G. Kostorz: Lattice and thermal misfit dislocations in epitaxial CaF2/Si(111) and BaF2/CaF2/Si(111) structures, Phys. Rev. Lett. 68, 3599–3602 (1992)

    Article  CAS  Google Scholar 

  16. G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, S. Granick: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101, 2606–2615 (1994)

    Article  CAS  Google Scholar 

  17. S. Glasstone, K. J. Laidler, H. Eyring: Theory of Rate Processes (McGraw-Hill, New York 1941)

    Google Scholar 

  18. M. He, A. Szuchmacher Blum, G. Overney, R. M. Overney: Effect of interfacial liquid structuring on the coherence length in nanolubrication, Phys. Rev. Lett. 88(15), 154302/1–4 (2002)

    Article  CAS  Google Scholar 

  19. K. L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1987)

    Google Scholar 

  20. E. Meyer, R. M. Overney, K. Dransfeld, T. Gyalog: Nanoscience: Friction and Rheology on the Nanometer Scale (World Scientific, Singapore 1998)

    Book  Google Scholar 

  21. H. K. Christenson, D. W. R. Gruen, R. G. Horn, J. N. Israelachvili: Structuring in liquid alkanes between solid-surfaces—Force measurements and mean-field theory, J. Chem. Phys. 87(3), 1834–1841 (1987)

    Article  CAS  Google Scholar 

  22. C. Drummond, J. Israelachvili: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear, Macromolecules 33(13), 4910–4920 (2000)

    Article  CAS  Google Scholar 

  23. R. M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Anisotropy in friction and molecular stick–slip motion, Phys. Rev. Lett. 72, 3546–3549 (1994)

    Article  CAS  Google Scholar 

  24. R. M. Overney, H. Takano, M. Fujihira: Elastic compliances measured by atomic force microscopy, Europhys. Lett. 26(6), 443–447 (1994)

    Article  CAS  Google Scholar 

  25. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84(6), 1172–1175 (2000)

    Article  CAS  Google Scholar 

  26. Y. Sang, M. Dube, M. Grant: Thermal effects on atomic friction, Phys. Rev. Lett. 87(17), 174301/1–4 (2001)

    Article  CAS  Google Scholar 

  27. O. K. Dudko, A. E. Filippov, J. Klafter, M. Urbakh: Dynamic force spectroscopy: A Fokker–Planck approach, Chem. Phys. Lett. 352, 499–504 (2002)

    Article  CAS  Google Scholar 

  28. F. Heslot, T. Baumberger, B. Perrin, B. Caroli, C. Caroli: Creep, stick–slip, and dry-friction dynamics: Experiments and a heuristic model, Phys. Rev. E 49, 4973–4988 (1994)

    Article  Google Scholar 

  29. S. Sills, R. M. Overney: Creeping friction dynamics and molecular dissipation mechanisms in glassy polymers, Phys. Rev. Lett. 91, 095501(1–4) (2003)

    Article  Google Scholar 

  30. W. D. Luedtke, U. Landman: Slip diffusion and Levy flights of an adsorbed gold nanocluster, Phys. Rev. Lett. 82, 3835–3838 (1999)

    Article  CAS  Google Scholar 

  31. I. M. Sokolov: Levy flights from a continuous-time process, Phys. Rev. E 63, 011104/1–10 (2000)

    Article  Google Scholar 

  32. R. Metzler, J. Klafter: The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339, 1–77 (2000)

    Article  CAS  Google Scholar 

  33. R. Metzler, J. Klafter: Levy meets Boltzmann: Strange initial conditions for Brownian and fractional Fokker–Planck equations, Physica A 302, 290–296 (2001)

    Article  Google Scholar 

  34. R. G. Palmer, D. L. Stein, E. Abrahams: Models of hierarchically constrained dynamics for glass relaxation, Phys. Rev. Lett. 53, 958–961 (1984)

    Article  Google Scholar 

  35. N. W. Ashcroft, N. D. Mermin: Solid State Physics (CBS Asia, Philadelphia 1976)

    Google Scholar 

  36. R. Becker: Theorie der Wärme (Springer, Berlin 1985)

    Google Scholar 

  37. F. Heslot, N. Fraysse, A. M. Cazabat: Molecular layering in the spreading of wetting liquid drops, Nature 338, 640–642 (1989)

    Article  CAS  Google Scholar 

  38. T. E. Karis, G. W. Tyndall: Calculation of spreading profiles for molecularly-thin films from surface energy gradients, J. Non-Newtonian Fluid Mech. 82, 287–302 (1999)

    Article  CAS  Google Scholar 

  39. S. F. Burlatsky, G. Oshanin, A. M. Cazabat, M. Moreau: Microscopic model of upward creep of an ultrathin wetting film, Phys. Rev. Lett. 76, 86–89 (1996)

    Article  CAS  Google Scholar 

  40. T. M. O'Connor, Y. R. Back, M. S. Jhon, B. G. Min, D. Y. Yoon, T. E. Karis: Surface diffusion of thin perfluoropolyalkylether films, J. Appl. Phys. 79, 5788–5790 (1996)

    Article  Google Scholar 

  41. X. Ma, J. Gui, L. Smoliar, K. Grannen, B. Marchon, C. L. Bauer, M. S. Jhon: Complex terraced spreading of perfluoropolyalkylether films on carbon surfaces, Phys. Rev. E 59, 722–727 (1999)

    Article  CAS  Google Scholar 

  42. A. Plonka, J. Bednarek, K. Pietrucha: Reaction dynamics in glass transition region: propagating radicals in ultraviolet-irradiated poly(methyl methacrylate), J. Chem. Phys. 104, 5279–5283 (1996)

    Article  CAS  Google Scholar 

  43. R. M. Overney, C. Buenviaje, R. Luginbuehl, F. Dinelli: Glass and structural transitions measured at polymer surfaces on the nanoscale, J. Therm. Anal. Calorimetry 59, 205–225 (2000)

    Article  CAS  Google Scholar 

  44. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R. M. Overney: Shear modulation force microscopy study of near surface glass transition temperature, Phys. Rev. Lett. 85(11), 2340–2343 (2000)

    Article  CAS  Google Scholar 

  45. H. Yoshizawa, P. McGuiggan, J. N. Israelachvili: Identification of a second dynamic state during stick–slip motion, Science 259, 1305–1308 (1993)

    Article  CAS  Google Scholar 

  46. M. G. Rozman, M. Urbakh, J. Klafter: Stick–slip motion and force fluctuations in a driven two-wave potential, Phys. Rev. Lett. 77, 683–686 (1996)

    Article  CAS  Google Scholar 

  47. J. M. Carlson, A. A. Batista: Constitutive relation for the friction between lubricated surfaces, Phys. Rev. E 53, 4153–4164 (1996)

    Article  CAS  Google Scholar 

  48. Y. Braiman, F. Family, H. G. E. Hentschel: Array-enhanced friction in the periodic stick–slip motion of nonlinear oscillators, Phys. Rev. E 53, R3005–R3008 (1996)

    Article  CAS  Google Scholar 

  49. M. G. Rozman, M. Urbakh, J. Klafter: Controlling chaotic frictional forces, Phys. Rev. E 57, 7340–7343 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to René Overney Prof. , George Tyndall Dr. or Jane Frommer Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Overney, R., Tyndall, G., Frommer, J. (2007). Kinetics and Energetics in Nanolubrication. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_45

Download citation

Publish with us

Policies and ethics