Skip to main content

Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Abstract

A successful industrial application of a novel type biomass estimator based on Genetic Programming (GP) is described in the paper. The biomass is inferred from other available measurements via an ensemble of nonlinear functions, generated by GP. The models are selected on the Pareto front of performance-complexity plane. The advantages of the proposed inferential sensor are: direct implementation into almost any process control system, rudimentary self-assessment capabilities, better robustness toward batch variations, and more effective maintenance. The biomass inferential sensor has been applied in high cell density microbial fermentations at The Dow Chemical Company.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, New York (1998)

    Google Scholar 

  2. Qin, S.: Neural Networks for Intelligent Sensors and Control - Practical Issues and Some Solutions. In: Neural Systems for Control, Academic Press, New York (1996)

    Google Scholar 

  3. Lennox, B., Montague, G., Frith, A., Gent, C., Bevan, V.: Industrial Applications of Neural Networks – An Investigation. Journal of Process Control 11, 497–507 (2001)

    Article  Google Scholar 

  4. Kordon, A., Smits, G., Kalos, A., Jordaan, E.: Robust Soft Sensor Development Using Genetic Programming. In: Leardi, R. (ed.) Nature-Inspired Methods in Chemometrics, Elsevier, Amsterdam (2003)

    Google Scholar 

  5. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  7. Kordon, A., Smits, G.: Soft Sensor Development Using Genetic Programming. In: Proceedings of GECCO 2001, San Francisco, pp. 1346–1351 (2001)

    Google Scholar 

  8. Kalos, A., Kordon, A., Smits, G., Werkmeister, S.: Hybrid Model Development Methodology for Industrial Soft Sensors. In: Proc. of the ACC 2003, Denver, CO, pp. 5417–5422 (2003)

    Google Scholar 

  9. Kordon, A.K., Smits, G.F., Jordaan, E., Rightor, E.: Robust Soft Sensors Based on Integration of Genetic Programming, Analytical Neural Networks, and Support Vector Machines. In: Proceedings of WCCI 2002, Honolulu, pp. 896–901 (2002)

    Google Scholar 

  10. Di Massimo, C., et al.: Bioprocess Model Building Using Artificial Neural Networks. Bioprocess Engineering 7, 77–82 (1991)

    Google Scholar 

  11. Tham, M., Morris, A., Montague, G., Lant, P.: Soft Sensors For Process Estimation and Inferential Control. J. Process Control 1, 3–14 (1991)

    Article  Google Scholar 

  12. Willis, M., et al.: Solving Process Engineering Problems Using Artificial Neural Networks. In: Mc Ghel, Grimble, M., Mowforth, P. (eds.) Knowledge-Based Systems for Industrial Control, pp. 123–142 (1992)

    Google Scholar 

  13. Cheruy, A.: Software Sensors in Bioprocess Engineering. Journal of Biotechnology 52, 193–199 (1997)

    Article  Google Scholar 

  14. Hodge, D., Simon, L., Karim, M.: Data Driven Approaches to Modeling and Analysis of Bioprocesses: Some Industrial Examples. In: Proc. of the ACC 2003, Denver, pp. 2062–2076 (2003)

    Google Scholar 

  15. Sharkey, A. (ed.): Combining Artificial Neural Nets. Springer, London (1999)

    MATH  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  17. Bleuer, S., Brack, M., Thiele, L., Zitzler, E.: Multi-Objective Genetic Programming: Reducing Bloat bt Using SPEA-2. In: Proceedings of CEC 2001, pp. 536–543 (2001)

    Google Scholar 

  18. Lampinen, J., Vehtari, A.: Bayesian Approach for Neural Networks – Review and Case Studies. Neural Networks 14, 7–14 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kordon, A. et al. (2004). Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic Programming. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_118

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_118

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics