Skip to main content

Low-Dimensional Lattice Basis Reduction Revisited

  • Conference paper
Algorithmic Number Theory (ANTS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3076))

Included in the following conference series:

Abstract

Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev’s analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of the 28th Symposium on the Theory of Computing, pp. 99–108. ACM Press, New York (1996)

    Google Scholar 

  2. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract). In: Proc. of the 30th Symposium on the Theory of Computing, pp. 10–19. ACM Press, New York (1998)

    Google Scholar 

  3. Akhavi, A., Moreira dos Santos, C.: Another view of the Gaussian algorithm. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 474–487. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1959)

    MATH  Google Scholar 

  5. Gauss, C.F.: Disquisitiones Arithmeticæ. Leipzig (1801)

    Google Scholar 

  6. Gruber, M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  7. Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Th. Computer Science 41, 125–139 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hermite, C.: Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. J. Reine Angew. Math. 40, 279–290 (1850)

    Google Scholar 

  9. Hermite, C.: Œuvres. Gauthier-Villars, Paris (1905)

    MATH  Google Scholar 

  10. Kaib, M., Schnorr, C.P.: The generalized Gauss reduction algorithm. J. of Algorithms 21(3), 565–578 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Korkine, A., Zolotareff, G.: Sur les formes quadratiques. Math. Ann. 6, 336–389 (1873)

    Google Scholar 

  12. Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. of Algorithms 1, 142–186 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)

    Article  Google Scholar 

  14. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Heidelberg (2002)

    Google Scholar 

  15. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. In: Proc. of the 39th Symposium on the Foundations of Computer Science, pp. 92–98. IEEE, Los Alamitos (1998)

    Google Scholar 

  16. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: A cryptographic perspective. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  17. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag, Leipzig (1896)

    Google Scholar 

  18. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Ryskov, S.S.: On Hermite, Minkowski and Venkov reduction of positive quadratic forms in n variables. Soviet Math. Doklady 13, 1676–1679 (1972)

    Google Scholar 

  20. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Th. Computer Science 53, 201–224 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

    Google Scholar 

  23. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  24. Semaev, I.: A 3-dimensional lattice reduction algorithm. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 181–193. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  26. Stogrin, M.I.: Regular Dirichlet-Voronoï partitions for the second triclinic group. American Mathematical Society, Providence (1975); English translation of the Proceedings of the Steklov Institute of Mathematics (123) (1973)

    Google Scholar 

  27. Vallée, B.: Une Approche Géométrique de la Réduction de Réseaux en Petite Dimension. PhD thesis, Université de Caen (1986)

    Google Scholar 

  28. Vallée, B.: Gauss’ algorithm revisited. J. of Algorithms 12(4), 556–572 (1991)

    Article  MATH  Google Scholar 

  29. van derWaerden, B.L.: Die Reduktionstheorie der positiven quadratischen Formen. Acta Mathematica 96, 265–309 (1956)

    Article  MathSciNet  Google Scholar 

  30. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 134, 198–287 (1908)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, P.Q., Stehlé, D. (2004). Low-Dimensional Lattice Basis Reduction Revisited. In: Buell, D. (eds) Algorithmic Number Theory. ANTS 2004. Lecture Notes in Computer Science, vol 3076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24847-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24847-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22156-2

  • Online ISBN: 978-3-540-24847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics