Skip to main content

Resonant Tunneling Heterostructure Devices – Dependencies on Thickness and Number of Quantum Wells

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

Abstract

We present numerical results for GaAs/AlGaAs double-barrier resonant tunneling heterostructure devices. A particular emphasis is given to the influence of quantum well thickness and number of quantum well layers on current-voltage characteristic and carrier density profile. In the paper, we discuss results obtained for spatial dependencies of carrier densities, the peak and the valley current density, and corresponding potentials in N-shaped current-voltage characteristics for various resonant tunneling heterostructures. Results are based on the transient quantum drift-diffusion model. They are obtained by solving a coupled system of partial differential equations directly and, in contrast to previous analysis, no decoupling algorithms, procedures, or methods are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sze, S.M.: Semiconductor Devices – Physics and Technology. Wiley, New York (1985)

    Google Scholar 

  2. Shur, M.: Physics of Semiconductor Devices. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  3. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors – Physics and Materials Properties. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  4. Scholl, E.: Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  5. Ancona, M.G.: Diffusion-Drift Modeling of Strong Inversion Layers. COMPEL 6, 11–18 (1987)

    Google Scholar 

  6. Ancona, M.G., Tiersten, H.F.: Macroscopic Physics of the Silicon Inversion Layer. Phys. Rev. B 35(15), 7959–7965 (1987)

    Article  Google Scholar 

  7. Ancona, M.G., Iafrate, G.J.: Quantum Correction to the Equation of State of an Electron Gas in a Semiconductor. Phys. Rev. B 39(13), 9536–9540 (1989)

    Article  Google Scholar 

  8. Pinnau, R., Unterreiter, A.: The Stationary Current-Voltage Characteristics of the Quantum Drift-Diffusion Model. SIAM J. Numer. Anal. 37(1), 211–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pinnau, R.: The Linearized Transient Quantum Drift-diffusion Model – Stability of Stationary States. ZAMM 80(5), 327–344 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pinnau, R.: Numerical Approximation of the Transient Quantum Drift-Diffusion Model. Nonlinear Analysis 47, 5849–5860 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pinnau, R.: A Note on Boundary Conditions for Quantum Hydrodynamic Equations. Appl. Math. Lett. 12, 77–82 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Markowich, P.A., Ringhofer, C.A.: Stability of the Linearized Transient Semiconductor Device Equations. ZAMM 67(7), 319–332 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1991)

    Google Scholar 

  14. Mock, M.S.: Analysis of Mathematical Models of Semiconductor Devices. Boole Press, Dublin (1983)

    MATH  Google Scholar 

  15. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Google Scholar 

  16. Schatzman, M.: Numerical Analysis – A Mathematical Introduction. Clarendon Press, Oxford (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radulovic, N., Willatzen, M., Melnik, R.V.N. (2004). Resonant Tunneling Heterostructure Devices – Dependencies on Thickness and Number of Quantum Wells. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics