Skip to main content

Neuromuscular Remodelling in the Adult Induced by Small Physiologic Changes in the Locomotor Activity

  • Chapter
Biomedical and Life Physics
  • 136 Accesses

Abstract

Neuromuscular junction morphology itself is the result of a developmental process that probably is going on during the whole life span of an animal. This process is based on several mechanisms: those that require neural activity and those that do not, see Goodman and Shatz [13] for a recent review). In general the initial steps of axonal guidance and target recognition can occur before neurons become functionally active and so, diffusible gradients and extracellular matrix molecules play a significant role [27,30,31,34,35]. As development progresses and synaptic terminals display adult characteristics, miniature endplate potential frequency and endplate potential quantal content increase gradually achieving their adult values in rat [9] and amphibian muscle fibers [5]. So, thereafter neural activity-related mechanisms can induce plastic modifications tending to remodelate circuits and terminate the molecular organization of the connections [21,32,33,40,41]. This process of activity-dependent synaptic plasticity does not stop at birth but seems to continue throughout the lifetime of the organisms. In the adult neuromuscular junctions there are many situations indicating that synapse or muscle cell activity-depending mechanisms govern plasticity, growth responses and the final size that can be attained by motor nerve endings in a particular situation [3,43,52]. For instance, the activity-dependent seasonal remodelling changes in frog neuromuscular junctions [50].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.B. Alshuaib and M.A. Fahim. Effect of exercise on physiological age-related change at mouse neuromuscular junctions. Neurobiol Aging, 11:555–561, 1990.

    Article  Google Scholar 

  2. M.H. Andonian and M.A. Fahim. Effects of endurance exercise on the morphology of mouse neuromuscular junctions during ageing. J. Neurocytol, 16:589–599, 1987.

    Article  Google Scholar 

  3. H.L. Atwood, P.V. Nguyen and A.J. Mercier. Activity-dependent adaptation neuromuscular systems: comparative observations. In A. Wernig, editor, Restorative Neurology (Vol. 5, Motoneuronal Plasticity), pages 101–114, Amsterdam, 1991, Elsevier.

    Google Scholar 

  4. R. J. Balice-Gordon and J.W. Lichtman. In vivo visualization the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci., 10:894–908, 1990.

    Google Scholar 

  5. M.R. Bennett and A.G. Pettigrew. The formation of synapses in amphibian striated muscle during development. J. Physiol (Lond.), 252203–239, 1975.

    Google Scholar 

  6. M.R. Bennett, N.A. Lavidis and F. Lavidis-Armson. The probability of quantal secretion at release sites of different length in toad fo marinus) muscle. J. Physiol. (Lond.), 418:235–249, 19

    Google Scholar 

  7. R. Casabury. Principles of exercise training. Chest, 102s:263–276, 1992.

    Article  Google Scholar 

  8. A.L. Connold, J. V. Evers and G. Vrbova. Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle. Bruin Res. Dev. Brain Res. 28:99–108,1986.

    Article  Google Scholar 

  9. J. Diamond and R. Miledi. A study of foetal and new-born rat muscle fibres. J. Physiol. (Land.), 162:393–408, 1962.

    Google Scholar 

  10. M.A. Fahim and N. Robbins. Remodelling of the neuromuscular junction after subtotal disuse. Brain Res., 383:353–356, 1986.

    Article  Google Scholar 

  11. M.A. Fahim. Rapid neuromuscular remodeling following limb immobilization. Anal Rec, 224:102–109, 1989.

    Article  Google Scholar 

  12. M.J. Ferns and Z.W. Hall. How many agrins does it take to make a synapse? Cell, 70:1–3, 1992.

    Article  Google Scholar 

  13. C.S. Goodman and C.J. Shatz. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72/Neuron 10(Suppl.):77–98, 1993.

    Article  Google Scholar 

  14. CA. Haimann, A. Mailart, J. Tomas i Ferré and N.F. Zilber-Gachelin. Patterns of motor innervation in the pectoral muscle of adult Xenopus laevis: evidence for possible synaptic remodelling. J. Physiol (Lond.), 310:241–256, 1981.

    Google Scholar 

  15. A.A. Herrera, A.D. Grinnell and B. Wolowske. Ultrastructural correlates of naturally occurring differences in transmitter release efficacy in frog motor nerve terminals. J. NeurocytoL, 14: 193–202, 1985.

    Article  Google Scholar 

  16. A.A. Herrera and M.J. Werle. Mechanisms of elimination, remodeling, and competition at frog neuromuscular junctions. J. Neurobiol., 21:73–98, 1990.

    Article  Google Scholar 

  17. A.A. Herrera, L.R. Banner and N. Nagaya. Repeated, in vivo observation of frog neuromuscular junctions: remodelling involves concurrent growth and retraction. J. Neurocytol., 19:85–99, 1990.

    Article  Google Scholar 

  18. R.R. Hill, N. Robbins and Z.P. Fang. Plasticity of presynaptic and postsynaptic elements of neuromuscular junctions repeatedly observed in living adult mice. J. Neurocytol., 20:165–182, 1991.

    Article  Google Scholar 

  19. H. Jans, R. Salzmann and A. Wemig. Sprouting and nerve retraction in frog neuromuscular junction during ontogenesis and environmental changes. Neuroscience, 18:773–781, 1986.

    Article  Google Scholar 

  20. J.K.S. Jansen and T. Fladby. The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog. Neurobiol., 34:39–90, 1990.

    Article  Google Scholar 

  21. C-P. Ko. Formation of the active zone at developing neuromuscular junctions in larval and adult bullfrogs. J. NeurocytoL, 14:487–512, 1985.

    Article  Google Scholar 

  22. R. J. Lasek and P.N. Hoffinann. The neuronal cytoskeleton, axonal transport and axonal growth. In R. Goldman, T. Pollard and J. Rosenbaum, editors, Cell Motility, pp 1021, 1976, Cold Spring Harbo

    Google Scholar 

  23. J.W. Lichtman, L. Magrassi and D. Purves. Visualization of neuromuscular junctions over periods of several months in living mice. J. Neuroscl., 7:1215–1222, 1987.

    Google Scholar 

  24. R.M. Nitkin, M.A. Smith, C. Magill, JR. Fallon, Y-M.M. Yao, B.G. Wallace and U.J. McMahan. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell BioL, 105:2471–2478, 1987.

    Article  Google Scholar 

  25. K. Peper, R.J. Bradley and F. Dreyer. The acetylcholine receptor at the neuromuscular junction. Physiol. Rev., 62:1271–1340, 1982.

    Google Scholar 

  26. J.W. Propst and C-P. Ko. Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of identified frog neuromuscular junctions. J. Neurosci. 7:3654–3664, 1987.

    Google Scholar 

  27. C.F. Reichardt and K.S. Tomaselli. Extracellular matrix molecules and their receptors: function in neural development. Annu. Rev. Neurosci., 14:531–570, 1991.

    Article  Google Scholar 

  28. N. Robbins and M.A. Fahim. Progression of age changes in mature mouse motor nerve terminals and its relation to locomotor activity. J. NeurocytoL 14:1019–1036, 1985.

    Article  Google Scholar 

  29. R. Robitaille and J.P. Tremblay. Non-uniform release at the frog neuromuscular junction: evidence of morphological and physiological plasticity. Brain Res., 12:95–116, 1987.

    Article  Google Scholar 

  30. U. Rutishauser. N-CAM and its polysialic acid moiety. A mechanism for pull/push regulation of cell interactions during development. Dev.SuppL, 1992:99–194, 1992.

    Google Scholar 

  31. U. Rutishauser. Regulation of cell-cell interactions by N-CAM and its polysialic acid moiety. In Advances in Neurobiology, pages 215–227, New York, 1993, Raven Press.

    Google Scholar 

  32. MM. Salpeter. Vertebrate neuromuscular junctions: general morphology, molecular organization and functional consequences. In Salpeter, M.M., editor, The vertebrate neuromuscular junction, pages 1–55, New York, 1987a, Alan R. Riss Inc.

    Google Scholar 

  33. M.M. Salpeter (1987b) Development and neural control of the neuromuscular junction and of the junctional acetylcholine receptor. In Salpeter, MM., editor, The vertebrate neuromuscular junction, pages 55–115, New York, 1987b, Alan R. Riss Inc.

    Google Scholar 

  34. J.R. Sanes. Roles of extracellular matrix in neural development. Annu. Rev. Physiol., 45:581–600, 1983.

    Article  Google Scholar 

  35. J.R. Sanes. Laminin for axonal guidance?. Nature, 315:714–715, 1985.

    Article  Google Scholar 

  36. W.W. Schlaepfer. The nature of mammalian neurofilaments and their breakdown by calcium. Progress in Neuropathology, 4:101–123, 1979.

    Google Scholar 

  37. W.W. Schlaepfer and S. Micko. Calcium-dependent alterations of neurofilament proteins of rat peripheral nerve. J. Neurochem., 32:211–219, 1979.

    Article  Google Scholar 

  38. J.R. Slack., W.G. Hopkins and S. Pockett. Evidence for a motor nerve growth factor. Muscle Nerve, 6:243–252, 1983.

    Article  Google Scholar 

  39. G.J. Swanson and G. Vrbová. Effects of low calcium and inhibition of calcium-activated neutral protease (CANP) on mature nerve terminal structure in the rat sternocostalis muscle. Brain Res. Dev. Brain Res., 33:199–203, 1987.

    Article  Google Scholar 

  40. W.J. Thompson. Synapse elimination in neonatal rat muscle is sensitive to the pattern of muscle use. Nature, 302:614–616, 1983.

    Article  Google Scholar 

  41. W.J. Thompson. Activity and synapse elimination at the neuromuscular junction. Cell Mol. Neurobiol, 5:167–182, 1985.

    Article  Google Scholar 

  42. J. Tomas i Ferré, E. Mayayo and R. Fenou i Brunei Morphometric study of the neuromuscular synapses in the adult rat with special reference to the remodelling concept. Biol. Cell, 60: 133–144, 1987.

    Article  Google Scholar 

  43. J. Tomas, R. Fenoll, M. Santafé, J. Batlle and E. Mayayo. Motor nerve terminal morphologic plasticity induced by small changes in the locomotor activity of the adult rat. Neurosci. Lett., 106:137–140, 1989.

    Article  Google Scholar 

  44. J. Tomas, V. Piera, R. Fenoll, M. Santafé, J. Batlle, M.A. Lanuza and E. Mayayo. Motor nerve terminal morphologic plasticity induced by “physiological” increase in the locomotor activity of the adult rat. Eur. J. Neurosci., 3(suppl):210, 1990a.

    Google Scholar 

  45. J. Tomas, R. Fenoll, E. Mayayo and M. Santafé. Branching pattern of the motor nerve endings in a skeletal muscle of the adult rat. J. Anal, 168:123–135, 1990b.

    Google Scholar 

  46. J. Tomas, M. Santafé, R. Fenoll, E. Mayayo, J. Batlle, MA. Lanuza and V. Piera. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles. Biol. Cell, 74:299–305, 1992.

    Article  Google Scholar 

  47. J.P. Tremblay, R. Robitaille, O. Martineau, C. Labrecque and M.A. Fahim. Proximodistal gradients of the postjunctional folds at the frog neuromuscular junction. Neuroscience, 30:535–550, 1989.

    Article  Google Scholar 

  48. A.R. Tuffery. Growth and degeneration of motor end-plates in normal cat hind limb muscles. J. Anal, 110:221–247, 1971.

    Google Scholar 

  49. G. Vrbova, M.B. Lowrie M.B. and J. Evers. Reorganization of synaptic inputs to developing skeletal muscle fibres. In Ciba Foundation Symposium, Vol. 138: Plasticity of the neuromuscular system. Chichester Wiley, pages 131–151, Chichester, 1988, Wiley.

    Google Scholar 

  50. A. Wernig, M. Pécot-Dechavassine and H. StÖver. Sprouting and regression of the nerve at the frog neuromuscular junction in normal conditions and after prolonged paralysis with curare. J. Neurocytol, 9:277–303, 1980.

    Article  Google Scholar 

  51. A. Wernig and A.A. Herrera. Sprouting and remodelling at the nerve-muscle junction. Prog. Neurobiol, 27:251–291, 1986.

    Article  Google Scholar 

  52. A. Wernig and M. Dorlöchter. Plasticity of the nerve muscle junction. In H. Rahmann, editor, Prog, in Zool. (Vol 37) Fundamentals of Memory Formation: Neuronal Plasticity and Brain Function, pages 83–99, Stuttgart, 1989, Gustav Fisher Verlag.

    Google Scholar 

  53. D.J. Wigston. Remodeling of neuromuscular junctions in the adult mouse soleus. J. Neurosci., 9:639–647, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Fenoll-Brunet, M.R., Tomas, J., Santafé, M., Lanuza, M.A. (1996). Neuromuscular Remodelling in the Adult Induced by Small Physiologic Changes in the Locomotor Activity. In: Ghista, D.N. (eds) Biomedical and Life Physics. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85017-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85017-1_53

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85019-5

  • Online ISBN: 978-3-322-85017-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics