Skip to main content

Model of Coupled Oscillators for Fano Resonances

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

The use of analogies in numerical simulations and experiments can be a powerful tool to extract useful information, understand and design optical and electromagnetic systems based on the Fano effect. The model of coupled oscillators has been used over decades to interpret the Fano interference effect in a variety of optical, plasmonic and microwave systems. Fano resonances can be modeled with systems of weakly or strongly coupled mechanical oscillators, providing insight into the dynamics of the radiative continuum and the localized resonance. The coupled oscillator model has been revisited and used extensively in optical and electromagnetic analogs of Fano resonances in the recent years, and has also been the subject of further elaborations bringing it quite far from its standard form: this includes an explicit distinction between non-radiative and radiative losses, the relationship between the driving force and the radiative damping of the bright oscillator, its extension to non-linear effects (such as second or third harmonic generation), and the inclusion of a phase in the coupling term. Further work which has been conducted to understand the interplay between the bright mode and the dark mode in Fano-resonant systems is discussed, in particular the effect of modes coupling and non-radiative losses on its spectral lineshape. For this purpose, the Fano formula and its generalization to lossy systems have been derived in the coupled oscillator system. Finally, an extended coupled oscillator model including radiative losses as a result of Abraham-Lorentz force on accelerated charges is discussed. It allows a model of hybridization taking into account radiative losses and radiative coupling. Both phenomena of superradiance and subradiance, as well as the interaction between hybridized modes can be predicted. The purpose of this Chapter is to review these different forms of coupled oscillator models for Fano-resonant optical and microwave systems, and provide theoretical and experimental examples of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  2. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  3. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y. Kivshar, Nat. Photonics 11, 543 (2017)

    Article  Google Scholar 

  4. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  Google Scholar 

  5. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  6. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  7. P.M. Anisimov, J.P. Dowling, B.C. Sanders, Phys. Rev. Lett. 107, 163604 (2011)

    Article  ADS  Google Scholar 

  8. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83, 235427 (2011)

    Article  ADS  Google Scholar 

  9. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007)

    Google Scholar 

  10. M.A. Kats, N. Yu, P. Genevet, Z. Gaburro, F. Capasso, Opt. Express 19, 21748 (2011)

    Article  ADS  Google Scholar 

  11. J.D. Jackson, Classical Electromagnetics, 3rd edn. (Wiley, 1999)

    Google Scholar 

  12. J. Zuolaga, P. Nordlander, Nano Lett. 11, 1280 (2011)

    Article  ADS  Google Scholar 

  13. W.E. Lamb, R.C. Retherford, Phys. Rev. 81, 222 (1951)

    Article  ADS  Google Scholar 

  14. A.G. Litvak, M.D. Tokman, Phys. Rev. Lett. 88, 095003 (2002)

    Article  ADS  Google Scholar 

  15. C.L.G. Alzar, M.A.G. Martinez, P. Nussenzveig, Am. J. Phys. 70, 37 (2002)

    Article  ADS  Google Scholar 

  16. M.W. Klein, T. Tritschler, M. Wegener, S. Linden, Phys. Rev. B 72, 115113 (2005)

    Article  ADS  Google Scholar 

  17. Y.S. Joe, A.M. Satanin, C.S. Kim, Phys. Scr. 74, 259 (2006)

    Article  ADS  Google Scholar 

  18. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 102, 053901 (2009)

    Article  ADS  Google Scholar 

  19. J. Liu, H. Yang, C. Wang, K. Xu, J. Xiao, Sci. Rep. 6, 19040 (2016)

    Article  ADS  Google Scholar 

  20. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 109, 187401 (2012)

    Article  ADS  Google Scholar 

  21. N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  22. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, R. Singh, Adv. Opt. Mat. 3, 1537 (2015)

    Article  Google Scholar 

  23. B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, H. Giessen, ACS Photonics 1, 471 (2014)

    Article  Google Scholar 

  24. B. Gallinet, Fano Resonances in Plasmonic Nanostructures: Fundamentals, Numerical Modeling and Applications (Ecole Polytechnique Federale De Lausanne, These 5299, 2012)

    Google Scholar 

  25. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, O.J.F. Martin, Nano Lett. 13, 497 (2013)

    Article  ADS  Google Scholar 

  26. H. Feshbach, Ann. Phys. 19, 287 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.K. Bhatia, A. Temkin, Phys. Rev. A 29, 1895 (1984)

    Article  ADS  Google Scholar 

  28. E. Prodan, C. Radloff, N. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  29. R. Adato, A. Artar, S. Erramill, H. Altug, Nano Lett. 13, 2584 (2013)

    Article  ADS  Google Scholar 

  30. S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  31. N. Liu, S. Kaiser, H. Giessen, Adv. Mater. 20, 4521 (2008)

    Article  Google Scholar 

  32. B. Peng, S.K. Oznedir, W. Chen, F. Nori, L. Yang, Nat. Commun. 5, 5082 (2014)

    Article  ADS  Google Scholar 

  33. R. Taubert, M. Hentschel, J. Kstel, H. Giessen, Nano Lett. 12, 1367 (2012)

    Article  ADS  Google Scholar 

  34. R. Taubert, M. Hentschel, H. Giessen, J. Opt. Soc. Am. B 30, 3123 (2013)

    Article  ADS  Google Scholar 

  35. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328, 1135 (2010)

    Article  ADS  Google Scholar 

  36. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Nano Lett. 10, 2721 (2010)

    Article  ADS  Google Scholar 

  37. B. Hopkins, D.S. Filonov, S.B. Glybovski, A.E. Miroschnichenko, Phys. Rev. B 92, 045433 (2015)

    Article  ADS  Google Scholar 

  38. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, ACS Nano 3, 643 (2009)

    Article  Google Scholar 

  39. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S.A. Maier, Nano Lett. 9, 1663 (2009)

    Article  ADS  Google Scholar 

  40. A. Lovera, B. Gallinet, P. Nordlander, O.J.F. Martin, ACS Nano 7, 4527 (2013)

    Article  Google Scholar 

  41. J.B. Lassiter, H. Sobhani, M.W. Knight, W.S. Mielczarek, P. Nordlander, N.J. Halas, Nano Lett. 12, 1058 (2011)

    Article  ADS  Google Scholar 

  42. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006)

    Google Scholar 

  43. J. Butet, O.J.F. Martin, Opt. Express 22, 29693 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gallinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallinet, B. (2018). Model of Coupled Oscillators for Fano Resonances. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_5

Download citation

Publish with us

Policies and ethics