Skip to main content

Parallel Method of Pseudoprojection for Linear Inequalities

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 910))

Included in the following conference series:

Abstract

This article presents a new iterative method for finding an approximate solution of a linear inequality system. This method uses the notion of pseudoprojection which is a generalization of the operation of projecting a point onto a closed convex set in Euclidean space. Pseudoprojecting is an iterative process based on Fejer approximations. The proposed pseudoprojection method is amenable to parallel implementation exploiting the subvector method, which is also presented in this article. We prove both the subvector method correctness and the convergence of the pseudoprojection method.

I. Sokolinskaya—The study has been partially supported by the RFBR according to research project No. 17-07-00352-a and by the Government of the Russian Federation according to Act 211 (contract No. 02.A03.21.0011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here \(\mathrm {dist} (x,P) = \inf \left\{ {\left\| {x - y} \right\| :y \in P} \right\} \).

References

  1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954). https://doi.org/10.4153/CJM-1954-037-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can. J. Math. 6, 393–404 (1954). https://doi.org/10.4153/CJM-1954-038-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Merzlyakov, Y.I.: On a relaxation method of solving systems of linear inequalities. USSR Comput. Math. Math. Phys. 2, 504–510 (1963). https://doi.org/10.1016/0041-5553(63)90463-4

    Article  MATH  Google Scholar 

  4. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967). https://doi.org/10.1016/0041-5553(67)90040-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967). https://doi.org/10.1016/0041-5553(67)90113-9

    Article  Google Scholar 

  6. Germanov, M.A., Spiridonov, V.S.: On a method of solving systems of non-linear inequalities. USSR Comput. Math. Math. Phys. 6, 194–196 (1966). https://doi.org/10.1016/0041-5553(66)90066-8

    Article  MATH  Google Scholar 

  7. Goffin, J.L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5, 388–414 (1980). https://doi.org/10.1287/moor.5.3.388

    Article  MathSciNet  MATH  Google Scholar 

  8. González-Gutiérrez, E., Todorov, M.I.: A relaxation method for solving systems with infinitely many linear inequalities. Optim. Lett. 6, 291–298 (2012). https://doi.org/10.1007/s11590-010-0244-4

    Article  MathSciNet  MATH  Google Scholar 

  9. González-Gutiérrez, E., Hernández Rebollar, L., Todorov, M.I.: Relaxation methods for solving linear inequality systems: converging results. TOP 20, 426–436 (2012). https://doi.org/10.1007/s11750-011-0234-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Mandel, J.: Convergence of the cyclical relaxation method for linear inequalities. Math. Program. 30, 218–228 (1984). https://doi.org/10.1007/BF02591886

    Article  MathSciNet  MATH  Google Scholar 

  11. Konnov, I.: Combined Relaxation Methods for Variational Inequalities. LNE, vol. 495. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56886-2

    Book  MATH  Google Scholar 

  12. Konnov, I.V.: A modified combined relaxation method for non-linear convex variational inequalities. Optimization 64, 753–760 (2015). https://doi.org/10.1080/02331934.2013.820298

    Article  MathSciNet  MATH  Google Scholar 

  13. Fejér, L.: Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen. In: Hilbert, D. (ed.) Festschrift, pp. 41–48. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-61810-9_6

    Chapter  Google Scholar 

  14. Eremin, I.I.: Methods of Fejer’s approximations in convex programming. Math. Notes Acad. Sci. USSR 3, 139–149 (1968). https://doi.org/10.1007/BF01094336

    Article  MathSciNet  Google Scholar 

  15. Vasin, V.V., Eremin, I.I.: Operators and Iterative Processes of Fejér Type. Theory and Applications. Walter de Gruyter, Berlin, New York (2009)

    Book  Google Scholar 

  16. Sokolinskaya, I., Sokolinsky, L.: Revised pursuit algorithm for solving non-stationary linear programming problems on modern computing clusters with manycore accelerators. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 212–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55669-7_17

    Chapter  Google Scholar 

  17. Sokolinskaya, I.M.: Scalable algorithm for non-stationary linear programming problems solving. In: 2017 2nd International Ural Conference on Measurements (UralCon), pp. 49–53 (2017). https://doi.org/10.1109/URALCON.2017.8120685

  18. Sokolinskaya, I., Sokolinsky, L.B.: Scalability evaluation of NSLP algorithm for solving non-stationary linear programming problems on cluster computing systems. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 40–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_4

    Chapter  Google Scholar 

  19. Sokolinskaya, I., Sokolinsky, L.B.: On the solution of linear programming problems in the age of big data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 86–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_7

    Chapter  Google Scholar 

  20. Censor, Y., Elfving, T.: New methods for linear inequalities. Linear Algebra Appl. 42, 199–211 (1982). https://doi.org/10.1016/0024-3795(82)90149-5

    Article  MathSciNet  MATH  Google Scholar 

  21. De Pierro, A.R., Iusem, A.N.: A simultaneous projections method for linear inequalities. Linear Algebra Appl. 64, 243–253 (1985). https://doi.org/10.1016/0024-3795(85)90280-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim. Theory Appl. 72, 163–185 (1992). https://doi.org/10.1007/BF00939954

    Article  MathSciNet  MATH  Google Scholar 

  23. Eremin, I.I.: Teoriya lineynoy optimizatsii [The theory of linear optimization]. Publishing House “Yekaterinburg”, Ekaterinburg (1999). (in Russian)

    Google Scholar 

  24. Sokolinsky, L.B.: Analytical estimation of the scalability of iterative numerical algorithms on distributed memory multiprocessors. Lobachevskii J. Math. 39, 571–575 (2018). https://doi.org/10.1134/S1995080218040121

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Sokolinskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sokolinskaya, I. (2018). Parallel Method of Pseudoprojection for Linear Inequalities. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2018. Communications in Computer and Information Science, vol 910. Springer, Cham. https://doi.org/10.1007/978-3-319-99673-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99673-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99672-1

  • Online ISBN: 978-3-319-99673-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics