Skip to main content

Pb—Isotopic Characterization of Major Indian Gondwana Coalfields: Implications for Environmental Fingerprinting and Gondwana Reconstruction

  • Chapter
  • First Online:
Tectonics and Structural Geology: Indian Context

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

An extensive database of the isotopic composition as well as content of lead (Pb) has been created in this study from Indian Gondwana coal deposits. Indian Gondwana coal are mostly bituminous to sub–bituminous and occurs as seams inter-banded with sediments. They typically have high ash content (35–50%), which makes them a potential heavy pollutant, considering that very large quantity of coal is burnt for thermal power plants, smelters etc. 110 from different seams spread over the major Indian Gondwana coalfields, that are primarily used for power generation in thermal power plants and fly ash from respective five thermal power plants, have been analysed for their isotopic composition as well as the content of Pb. The results indicate variability of coals from Gondwana basins of India in terms of their concentration and Pb—isotopic ratios. The Pb isotopic composition of Indian Gondwana coals range 0.7150–0.8845 for 207Pb/206 Pb and 1.9484–2.2231 for 208Pb/206 Pb with Pb concentration within 3.2–566 mg kg−1. The variability of the Pb—content and its isotopic composition can be attributed to high and variable ash—content of the coal seams including its pyrite content as well as more radiogenic behaviour. However, within a seam Pb—isotopic ratios vary within a narrow range. Similarly the Pb isotopic composition obtained in the fly ash analyses range 0.8478–0.8757 for 207Pb/206 Pb and 2.1070–2.1706 for 208Pb/206Pb. These values have an increasing trend with respect to the feed coal Pb isotopic compositions when compared to the respective coal—deposits. The inventory generated in terms of Pb isotopic composition and content in Indian Gondwana coals would contribute to establish a background for identifying relative contribution of coal, especially those used in coal-based thermal plants for the Pb pollution in India. Not only this, the unique Pb isotopic composition of coals from south Indian Gondwana coalfields can be compared to the coal deposits of Amrey Group of Antarctica to offer a good constrain to achieve a tighter fit between India and Antarctica in a Gondwana framework and hence can have a wider implication for Gondwana reconstruction, once data set from Amrey Group becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK (2000) Tectonic setting and nature of the Gondwanic Indian crust. Proc. Vol., Int. Seminar, Precambrian Crust in Eastern and Central India. Geological Survey of India, Special Publication 57, 1–8

    Google Scholar 

  • Biswas SK (1999) A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects. In: Sahni A, Loyal RS (eds) Gondwana assembly: new issues and perspectives. proceedings of indian national science academy special issue 65, pp 261–283

    Google Scholar 

  • Boger SD, Wilson CJL (2003) Brittle faulting in the Prince Charles Mountains, East Antarctica: cretaceous transtensional tectonics related to the break-up of Gondwana. Tectonophysics 367, 173–186

    Article  Google Scholar 

  • Chen JM, Tan MG, Li YL, Zhang YM, Lu WW, Tong YP, Zhang GL, Li Y (2005) A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment 39, 1245–1253

    Article  Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environmental Pollution 158, 1134–1146

    Article  Google Scholar 

  • Das A, Krishna KVSS, Kumar R, Das A, Sengupta S, Ghosh JG (2016) Tracing lead contamination in foods in the city of Kolkata, India. Environmental Science and Pollution Research 23, 22454–22466

    Article  Google Scholar 

  • Díaz-Somoano M, Suárez-Ruiz I, Alonso JIG, Ruiz Encinar J, López-Anton MA, Martínez-Tarazona MR (2007) Lead isotope ratios in Spanish coals of different characteristics and origin. International Journal of Coal Geology 71, 28–36

    Article  Google Scholar 

  • Díaz-Somoano M, Kylander ME, Lopez-Anton MA, Suarez-Ruiz I, Martínez Tarazona MR, Ferrat M, Kober B, Weiss DJ (2009) Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing. Environmental Science and Technology 43, 1078–1085

    Article  Google Scholar 

  • Finkelman RB (1994) Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Processing Technology 39, 21–34

    Article  Google Scholar 

  • Flem B, Grimstvedt A, Cook N (2000) Lead isotope determinations by inductively-coupled plasma mass spectrometry (ICP-MS): potential of sector field instruments. NGU-BULL 436, 203–207

    Google Scholar 

  • Harrowfield M, Holdgate RG, Wilson CJL (2005) Tectonic significance of the Lambert graben, East Antarctica: Reconstructing the Gondwanan rift. Geology 33, 197–200

    Article  Google Scholar 

  • Holdgate GR, McLoughlin S, Drinnan AN, Finkelman RB, Willett JC (2005) Inorganic chemistry, petrography and palaeobotany of Permiancoals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology 63, 156–177

    Article  Google Scholar 

  • Jones DS, Maloof AC, Hurtgen MT, Rainbird RH, Schrag DP (2010) Regional and global chemostratigraphic correlation of the early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambrian Research 181, 43–63

    Article  Google Scholar 

  • Kumar R, Patel SS, Manjhi JK (2016a) Pb-isotopic characterization of major Indian Coalfields and their potential as heavy metal pollutants. GSI Unpublished Report

    Google Scholar 

  • Kumar R, Patel SS, Ghosh JG (2016b) Variability of Pb-isotopes in the East Indian Gondwana Coal deposits: its influence on Kolkata street dust. 35TH IGC ABSTRACT

    Google Scholar 

  • Kumar S, Aggarwal SG, Malherbe J, Barre JPG, Berial S, Gupta PK, Donard (2016c) Tracing dust transport from Middle-East over Delhi in March 2012 using metal and lead isotope composition. Atmospheric Environment 132, 179–187

    Article  Google Scholar 

  • Kumar R, Patel SS, Das A, Ghosh JG, Sengupta S, Krishna KVSS, Guha D (2017) Variability of Pb-isotopes in the East Indian Gondwana Coal deposits: It’s influence on Kolkata street dust. Indian Journal of Geoscience 71(4), 575–588

    Google Scholar 

  • Kylander ME, Klaminder J, Bindler R (2010) Natural Lead Isotope Variations in the Atmosphere. Earth and Planetary Science Letters 290, 44–53

    Article  Google Scholar 

  • McLoughlin S, Drinnan AN (1997) Revised stratigraphy of the Permian Bainmedart coal measures, northern Prince Charles Mountains, East Antarctica. Geological Magazine 134, 335–353

    Article  Google Scholar 

  • Melchin MJ, Holmden CE (2006) Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 186–200

    Article  Google Scholar 

  • Mishra DC, Chandra Sekhar DV, Venkata Raju DCh, Vijay Kumar V (1999) Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship. Earth and Planetary Science Letters 172, 287–300

    Article  Google Scholar 

  • Mond A (1972) Permian sediments of the Beaver Lake area, Prince Charles Mountains. In: Adie RJ (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, pp 585–589

    Google Scholar 

  • Mukherjee S (2019) Introduction to “Tectonics and Structural Geology: Indian Context”. In: Mukherjee S (ed) Tectonics and structural geology: Indian context. Springer International Publishing AG, Cham, pp 1–5. ISBN: 978-3-319-99340-9

    Google Scholar 

  • Playford G (1990) Proterozoic and Palaeozoic palynology of Antarctica: a review. In: Taylor TN, Taylor EL (eds) Antarctic paleobiology—its role in the reconstruction of Gondwana. Springer Verlag, New York. Plumstead, pp 50–70

    Chapter  Google Scholar 

  • Raja Rao CS (1982) Coalfields of India. Vol-II, coal resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra. Geological Survey of India Bulletin Series A, 45

    Google Scholar 

  • Raja Rao CS (1983) Coalfields of India. Vol‐III, Coal resources of Madhya Pradesh and Jammu and Kashmir. Geological Survey of India Bulletin Series A, 45

    Google Scholar 

  • Raja Rao CS (1987) Coalfields of India. Vol-IV, Part I. Coal resources of Bihar. Geological Survey of India Bulletin Series A, 45

    Google Scholar 

  • Stagg HMJ (1985) The structure and origin of Prydz Bay and MacRoberstonShelf. East Antarctica: Tectonophysics 114, 315–340

    Google Scholar 

  • Swaine DJ (1990) Trace elements in coal. Butterworths and Co. Publishers

    Google Scholar 

  • Tanimizu M, Ishikawa T (2006) Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochemical Journal 40, 121–133

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb/205Pb double spike for high precision lead isotope analysis in earth processes: reading the isotopic code. American Geophysical Union, pp 429–437

    Google Scholar 

  • Veevers JJ, Tewari RC (1995) Gondwana master basin of peninsular India between Tethys and the interior of the Gondwanaland province of Pangea. Memoir of Geological Society of America 187, 1–73

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, 13C and 18 O evolution of Phanerozoic seawater. Chemical Geology 161, 59–88

    Article  Google Scholar 

  • Webb A, Fielding R (1993) Permo-Triassic sedimentation within the Lambert Graben, northern Prince Charles Mountains, East Antarctica. In: Findlay RH, Uruug R, Banks MR, Veevers JJ (eds) Gondwana eight: assembly, evolution and dispersal. A. A. Balkema, Rotterdam, pp 357–369

    Google Scholar 

  • Weiss D, Kober B, Dolgopolova A, Gallagher K, Spiro B, Le Roux G, Mason TFD, Kylander M, Coles BJ (2004) Accurate and precise Pb isotope ratio measurements in environmental samples by MCICP- MS. International Journal of Mass Spectrometry 232, 205–215

    Article  Google Scholar 

  • White WM, Albaredeb F, Teloukb P (2000) High-precision analysis of Pb-isotope by multicollector ICP-MS. Chemical Geology 167, 257–270

    Article  Google Scholar 

  • Zhang GL, Yang FG, Zhao WJ, Zhao YG, Yang JL, Gong ZT (2007) Historical change of soil Pb content and Pb isotope signatures of the cultural layers in urban Nanjing. CATENA 69, 51–56

    Article  Google Scholar 

  • Zhou C, Liu G, Cheng S, Fang T, Lam PKS (2014) The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. Scientific Reports 4, 6221

    Article  Google Scholar 

Download references

Acknowledgements

This work is the outcome of the research project (RP/CHQMIV/2014/114) approved by Ministry of Mines and to be taken up by the Geological Survey of India, Kolkata. The author would like to thank the Director General, Geological Survey of India, Kolkata, for all sort of administrative supports and permission to publish this research outcome. The West Bengal Power Development Corporation, Kolkata and different regional ancillaries of Coal India Ltd. are acknowledged for their fruitful discussions and granting permission to collect samples from Thermal Power Plants and collieries respectively. Soumyajit Mukherjee edited and reviewed this manuscript. This work is summarized in Mukherjee (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R. et al. (2019). Pb—Isotopic Characterization of Major Indian Gondwana Coalfields: Implications for Environmental Fingerprinting and Gondwana Reconstruction. In: Mukherjee, S. (eds) Tectonics and Structural Geology: Indian Context. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-99341-6_17

Download citation

Publish with us

Policies and ethics