Skip to main content

Mudflat Ecosystem Engineers and Services

  • Chapter
  • First Online:
Mudflat Ecology

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Ecosystem engineers play a fundamental role in the creation, maintenance and transformation of habitats in tidal flats. Highly diverse in terms of size, phylogeny, and effect on their environment, they can facilitate or hinder a number of organisms, but generally have a positive influence on both the abundance and the diversity of mudflat organisms. The magnitude of the engineering effect is, however, largely dependent on the biotic and abiotic environment of the engineer. In particular, stressful habitats such as mudflats host a large number of ecosystem engineers; understanding interactions between them, and how they vary with abiotic variables, is therefore of crucial importance, to evaluate how ecosystem engineers affect benthic communities and ecosystem functioning. Such understanding will also help human populations which benefit from mudflat organisms and/or functioning (i.e. which derive ecosystem services from them), to maintain and manage the sustainably of tidal flats, in a way which maintains human health and well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agasse A, Boyen C, Durand P, Chaussade M (2015) Polysaccharides marins pour les santés végétale, animale et humaine. In: Paper presented at the Colloque Polymerix 2015, Rennes (France)

    Google Scholar 

  • Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am Nat 169:195–206

    Article  PubMed  Google Scholar 

  • Alvarez MF, Addino M, Iribarne O, Botto F (2015) Combined engineering effects of clams and crabs on infaunal assemblages and food availability in intertidal systems. Mar Ecol Prog Ser 540:57–71

    Article  Google Scholar 

  • Alves RMS, Vanaverbeke J, Bouma TJ, Guarini JM, Vincx M, Van Colen C (2017) Effects of temporal fluctuation in population processes of intertidal Lanice conchilega (Pallas, 1766) aggregations on its ecosystem engineering. Estuar Coast Shelf Sci 188:88–98

    Google Scholar 

  • Andersen TJ, Jensen KT, Lund-Hansen L, Mouritsen KN, Pejrup M (2002) Enhanced erodibility of fine-grained marine sediments by Hydrobia ulvae. J Sea Res 48:51–58

    Article  Google Scholar 

  • Bateman DC, Bishop MJ (2017) The environmental context and traits of habitat-forming bivalves influence the magnitude of their ecosystem engineering. Mar Ecol Prog Ser 563:95–110

    Article  Google Scholar 

  • Beaumont NJ, Austen MC, Mangi SC, Townsend M (2008) Economic valuation for the conservation of marine biodiversity. Mar Pollut Bull 56:386–396

    Article  CAS  PubMed  Google Scholar 

  • Bell SS (1985) Habitat complexity of polychaete tube-caps: influence of architecture on dynamics of a meioepibenthic assemblage. J Mar Res 43:647–671

    Article  Google Scholar 

  • Berke SK (2010) Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr Comp Biol 50:147–157

    Article  PubMed  Google Scholar 

  • Bertness MD (1984) Habitat and community modification by an introduced herbivorous snail. Ecology 65:370–381

    Article  Google Scholar 

  • Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989

    Article  Google Scholar 

  • Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng 128:2–8

    Article  Google Scholar 

  • Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40

    Article  Google Scholar 

  • Boogert NJ, Paterson DM, Laland KN (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56:570–578

    Article  Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27

    Article  CAS  Google Scholar 

  • Borja A, Elliot M, Uyarra MC, Carstensen J, Mea M (2017) Editorial: Bridging the gap between policy and science in assessing the health status of marine ecosystems. Front Mar Sci 4:32

    Article  Google Scholar 

  • Bouma TJ, Olenin S, Reise K, Ysebaert T (2009) Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol Mar Res 63:95–106

    Article  Google Scholar 

  • Boyer KE, Fong P (2005) Co-occurrence of habitat-modifying invertebrates: effects on structural and functional properties of a created salt marsh. Oecologia 143:619–628

    Article  PubMed  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Caliman A, Carneiro LS, Bozelli RL, Farjalla VF, Esteves FA (2011) Bioturbating space enhances the effects of non-additive interactions among benthic ecosystem engineers on cross-habitat nutrient regeneration. Oikos 120:1639–1648

    Article  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    Article  CAS  Google Scholar 

  • Chennu A, Volkenborn N, de Beer D, Wethey DS, Woodin SA, Polerecky L (2015) Effects of bioadvection by Arenicola marina on microphytobenthos in permeable sediments. PLoS One 10:e0134236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the roles of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Cruz Sueiro M, Bortolus A, Schwindt E (2011) Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgol Mar Res 65:467–477

    Article  Google Scholar 

  • Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological cascade effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    CAS  Google Scholar 

  • Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol J 8:1–16

    Article  Google Scholar 

  • Darwin CMA (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Davoult D, Migné A, Créach A, Gévaert F, Hubas C, Spilmont N, Boucher G (2009) Spatio-temporal variability of intertidal benthic primary production and respiration in the western part of the Mont Saint-Michel Bay (Western English Channel, France). Hydrobiologia 620:163–172

    Article  Google Scholar 

  • Defew EC, Tolhurst TJ, Paterson DM, Hagerthey SE (2003) Can the stability of intertidal sediments be predicted from proxy parameters? An in situ investigation. In: Raffaelli D, Solan M, Paterson DM, Buck AL, Pomfret JR (eds) The estuaries and coasts of north-east Scotland. Coastal Zone Topics, 5. Estuarine and Coastal Sciences Association, Aberdeen, pp 61–70

    Google Scholar 

  • Dodd M, Papineau D, Grenne T, Slack JF, Rittner M, Pirajino F, O'Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64

    Article  CAS  PubMed  Google Scholar 

  • Eckman JE, Duggins DO, Siddon CE (2003) Current and wave dynamics in the shallow subtidal: implications to the ecology of understory and surface-canopy kelps. Mar Ecol Prog Ser 265:45–56

    Article  Google Scholar 

  • Eklöf JS, Van der Heide T, Donadi S, van der Zee EM, O’Hara R, Eriksson BK (2011) Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. PLoS One 6:e23229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eklöf JS, Donadi S, van der Heide T, van der Zee EM, Eriksson BK (2015) Effects of antagonistic ecosystem engineers on macrofauna communities in a patchy, intertidal mudflat landscape. J Sea Res 97:56–65

    Article  Google Scholar 

  • Extended Evolutionnary Synthesis (2016) http://extendedevolutionarysynthesis.com/about-the-ees/. Accessed 17 Jan 2017

  • Fonseca MS, Fisher JS, Zieman JC, Thayer GW (1982) Influence of the seagrass, Zostera marina L., on current flow. Estuar Coast Shelf Sci 15:351–358

    Article  Google Scholar 

  • Forster S, Graf G (1995) Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianasse subterranea and “piston-pumping” by Lanice conchilega. Mar Biol 123:335–346

    Article  Google Scholar 

  • Forster RM, Créach V, Sabbe K, Vyverman W, Stal LJ (2006) Biodiversity-ecosystem function relationship in microphytobenthic diatoms of the Westerchelde estuary. Mar Ecol Prog Ser 311:191–201

    Article  Google Scholar 

  • Friedrichs M, Graf G, Springer B (2000) Skimming flow induced over a simulated polychaete tube lawn at low population densities. Mar Ecol Prog Ser 192:219–228

    Article  Google Scholar 

  • Friedrichs M, Leipe T, Peine F, Graf G (2009) Impact of macrozoobenthic structures on near-bed sediment fluxes. J Mar Syst 75:336–347

    Article  Google Scholar 

  • Ganthy F, Sottolichio A, Verney R (2013) Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d’Arcachon, France). J Mar Syst 109-110:S233–S240

    Article  Google Scholar 

  • Gerbersdorf SU, Bittner R, Lubarsky HV, Manz W, Paterson DM (2009) Microbial assemblages as ecosystem engineers of sediment stability. J Soils Sediments 9:640–652

    Article  CAS  Google Scholar 

  • Gribben PE, Byers JE, Clements M, McKenzie LA, Steinberg PD, Wright JT (2009) Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett 12:1127–1136

    Article  PubMed  Google Scholar 

  • Hagerthey SE, Defew EC, Paterson DM (2002) Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Mar Ecol Prog Ser 245:47–59

    Article  Google Scholar 

  • Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525

    Article  CAS  PubMed  Google Scholar 

  • Hanley N, Barbier E (2009) Pricing nature: cost-benefit analysis and environmental policy. Edward Elgar, Cheltenham

    Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164

    Article  PubMed  Google Scholar 

  • Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphism in heterogeneous environments. Annu Rev Ecol Evol Syst 7:1–32

    Article  Google Scholar 

  • Heinz Centre for Science Economics and the Environment (2000) Evaluation of erosion hazards. Report for Federal Emergency Management Agency, Washington, DC

    Google Scholar 

  • Hochard S, Pinazo C, Grenz C, Burton Evans JL, Pringault O (2010) Impact of microphytobenthos on the sediment biogeochemical cycles: a modelling approach. Ecol Model 221:1687–1701

    Article  CAS  Google Scholar 

  • Hubas C, Davoult D (2006) Does seasonal proliferation of Enteromorpha sp. affect the annual benthic metabolism of a small macrotidal estuary? (Roscoff Aber Bay, France). Estuar Coast Shelf Sci 70:287–296

    Article  Google Scholar 

  • Jesus B, Brotas V, Marani M, Paterson DM (2005) Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar Coast Shelf Sci 65:30–42

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Kanou K, Sano M, Kohno H (2004) Food habits of fishes on unvegetated tidal mudflats in Tokyo Bay, central Japan. Fish Sci 70:978–987

    Article  CAS  Google Scholar 

  • Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, Boit A, Joppa LN, Lafferty KD, Williams RJ, Martinez ND, Menge BA, Blanchette CA, Iles AC, Brose U (2012) More than a meal... integrating non-feeding interactions into food webs. Ecol Lett 15:291–300

    Article  PubMed  Google Scholar 

  • Kraan S (2012) Algal polysaccharides, novel applications and outlook In: Chang C-F (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. INTECH, Croatia

    Google Scholar 

  • Krumbein WE, Paterson DM, GAE Z (2003) Fossil and recent biofilms. A natural history of life on Earth. Kluwer, Dordrecht

    Book  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyama DJ, Lenski RE, Mackay TFC, Schulter D, Strassmann JE (2014) Does evolutionary therory need a rethink? Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, London, pp 141–150

    Chapter  Google Scholar 

  • Lee SY, Fong CW, Wu RSS (2001) The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J Exp Mar Biol Ecol 259:23–50

    Article  PubMed  Google Scholar 

  • Lejart M, Hily C (2011) Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J Sea Res 65:84–93

    Article  Google Scholar 

  • Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5:e13794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luckenbach MW (1986) Sediment stability around animal tubes: the roles of hydrodynamic processes and biotic activity. Limnol Oceanogr 31:779–787

    Article  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats.1. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Malarkey J, Baas JH, Hoppe JA, Aspden RJ, Parsons DR, Peakall J, Paterson DM, Schindler RJ, Ye L, Lichtman ID, Bass SJ, Davies AG, Manning AJ, Thorne PD (2015) The pervasive role of biological cohesion in bedform development. Nat Commun 6:6257

    Article  CAS  PubMed  Google Scholar 

  • Manzenrieder H (1983) Retardation of initial erosion under biological effects in sandy tidal flats. Tech University Braunschweig, Brunswick

    Google Scholar 

  • Markov B, Nedkov S (2016) Mapping of erosion regulation ecosystem services. In: Bandrova T, Konecny M (eds) 6th International conference on cartography and GIS. Albena, Bulgaria, pp 97–108

    Google Scholar 

  • Meadows PS, Meadows A (1991) The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems. In: Meadows PS, Meadows A (eds) The environmental impact of burrowing animals and animal burrows. Oxford Science Publications, Oxford, pp 157–181

    Google Scholar 

  • Meadows PS, Tait J, Hussain SA (1990) Effects of estuarine infauna on sediment stability and particle sedimentation. Hydrobiologia 190:263–266

    Article  Google Scholar 

  • Meadows PS, Meadows A, Murray JMH (2012) Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 157:31–48

    Article  Google Scholar 

  • Melville AJ, Connolly RM (2005) Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Mar Biol 148:363–371

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Migné A, Spilmont N, Davoult D (2004) In situ measurements of benthic production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Cont Shelf Res 24:1437–1449

    Article  Google Scholar 

  • Migné A, Spilmont N, Boucher G, Denis L, Hubas C, Janquin MA, Rauch M, Davoult D (2009) Annual budget of benthic production in Mont Saint-Michel Bay considering cloudiness, microphytobenthos migration, and variability of respiration rates with tidal conditions. Cont Shelf Res 29:2280–2285

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework for assessment. The Millenium Ecosystem Assessment Series. Island Press, Washington, DC

    Google Scholar 

  • Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 2. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212

    Article  Google Scholar 

  • Murray JMH, Meadows A, Meadows PS (2002) Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology 47:15–30

    Article  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton Univerity Press, Princeton, NJ

    Google Scholar 

  • Pakalniete K, Aigars J, Czajkowski M, Strake S, Zawojska E, Hanley N (2017) Understanding the distribution of economic benefits from improving coastal and marine ecosystems. Sci Total Environ 584-585:29–40

    Article  CAS  PubMed  Google Scholar 

  • Passarelli C, Hubas C, Nicolas Segui A, Grange J, Meziane T (2012a) Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O. F. Müller) trophic pressure. J Exp Mar Biol Ecol 438:52–60

    Article  Google Scholar 

  • Passarelli C, Olivier F, Paterson DM, Hubas C (2012b) Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Mar Ecol Prog Ser 465:85–97

    Article  Google Scholar 

  • Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101

    Article  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr 34:223–234

    Article  Google Scholar 

  • Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. Adv Ecol Res 29:155–193

    Article  Google Scholar 

  • Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid RP (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paterson DM, Fortune I, Aspden RJ, Black KS (2017) Intertidal mudflats: form and function. In: Perillo G, Wolanski E, Cahoon D, Brinson M (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier Academic, Amsterdam

    Google Scholar 

  • Powers SP, Rouhani S, Baker MC, Roman H, Grabowski JH, Scyphers SB, Willis JM, Hester MW (2017) Ecosystem services are lost when faciliation between two ecosystem engineers is compromised by oil. Mar Ecol Prog Ser 576:189–202

    Article  Google Scholar 

  • Project UMS (1997) http://www.ukmarinesac.org.uk/communities/intersand-mud/ism5_4.htm. Accessed 21 July 2017

  • Rabaut M (2009) Lanice conchilega, fisheries and marine conservation: towards an ecosystem approach to marine management. Ghent University, Ghent

    Google Scholar 

  • Rees SE, Rodwell LD, Attrill MJ, Austen MC, Mangi SC (2010) The value of marine biodiversity to the leisure and recreation industry and its application to marine spatial planning. Mar Policy 34:868–875

    Article  Google Scholar 

  • Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141

    Article  Google Scholar 

  • Rigolet C, Dubois SF, Thiébaut E (2014) Benthic control freaks: effects of the tubiculous amphipod Haploops nirae on the specific diversity and functional structure of benthic communities. J Sea Res 85:413–427

    Article  Google Scholar 

  • Sanders D, Jones CG, Thébault E, Bouma TJ, van der Heide T, van Belzen J, Barot S (2014) Integrating ecosystem engineering and food webs. Oikos 123:513–524

    Article  Google Scholar 

  • Sgrò CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248

    Article  PubMed  Google Scholar 

  • Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Technical University Berlin, Berlin

    Google Scholar 

  • Spilmont N, Migné A, Lefebvre A, Artigas LF, Rauch M, Davoult D (2005) Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France). J Sea Res 53:161–167

    Article  CAS  Google Scholar 

  • Spilmont N, Davoult D, Migné A (2006) Benthic primary production during emersion: in situ measurements and potential primary production in the Seine Estuary (English Channel, France). Mar Pollut Bull 53:49–55

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Summerhayes SA, Bishop MJ, Leigh A, Kelaher BP (2009) Effects of oyster death and shell disarticulation on associated communities of epibiota. J Exp Mar Biol Ecol 379:60–67

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175

    Article  PubMed  Google Scholar 

  • Tolhurst TJ, Consalvey M, Paterson DM (2008) Changes in cohesive sediment particles associated with the growth of a diatom biofilm. Hydrobiologia 596:225–239

    Article  Google Scholar 

  • Van Colen C, Thrush SF, Parkes S, Harris R, Woodin SA, Wethey DS, Pilditch CA, Hewitt JE, Lohrer AM, Vincx M (2015) Bottom-up and top-down mechanisms indirectly mediate interactions between benthic biotic ecosystem components. J Sea Res 98:42–48

    Article  Google Scholar 

  • Van De Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461

    Article  Google Scholar 

  • van der Heide T, van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, van Katwijk MM (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Article  Google Scholar 

  • Volkenborn N, Reise K (2006) Lugworm exclusion experiment: responses by deposit feeding worms to biogenic habitat transformations. J Exp Mar Biol Ecol 330:169–179

    Article  Google Scholar 

  • Volkenborn N, Reise K (2007) Effects of Arenicola marina on polychaete functional diversity revealed by large-scale experimental lugworm exclusion. J Sea Res 57:78–88

    Article  Google Scholar 

  • Volkenborn N, Hedtkamp SIC, van Beusekom JEE, Reise K (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuar Coast Shelf Sci 74:331–343

    Article  Google Scholar 

  • Volkenborn N, Robertson DM, Reise K (2009) Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion. Helgol Mar Res 63:27–35

    Article  Google Scholar 

  • Web of Science (2017) webofknowledge.com. Accessed 21 July 2017

  • Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. J Exp Mar Biol Ecol 400:132–144

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JB, Agnew DQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Woodin SA (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59:274–284

    Article  Google Scholar 

  • Woodin SA, Jackson JBC (1979) Interphyletic competition among marine benthos. Am Zool 19:1029–1043

    Article  Google Scholar 

  • Zühlke R (2001) Polychaete tubes create ephemeral community patterns: Lanice conchilega (Pallas, 1766) associations studied over six years. J Sea Res 46:261–272

    Article  Google Scholar 

  • Zühlke R, Blome D, van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenberg Marit 29:131–138

    Article  Google Scholar 

Download references

Acknowledgements

CP has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702217, and this support is gratefully acknowledged. DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland funded by the Scottish Funding Council; grant reference HR09011) and contributing institutions and work reported stems from support provided by the Templeton Foundation (JTF number 60501) and the NERC Blue-coast consortium (NE/N016009/1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Passarelli, C., Hubas, C., Paterson, D.M. (2018). Mudflat Ecosystem Engineers and Services. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_10

Download citation

Publish with us

Policies and ethics