Skip to main content

LIFT: Learning Fault Trees from Observational Data

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11024))

Included in the following conference series:

Abstract

Industries with safety-critical systems increasingly collect data on events occurring at the level of system components, thus capturing instances of system failure or malfunction. With data availability, it becomes possible to automatically learn a model describing the failure modes of the system, i.e., how the states of individual components combine to cause a system failure. We present LIFT, a machine learning method for static fault trees directly out of observational datasets. The fault trees model probabilistic causal chains of events ending in a global system failure. Our method makes use of the Mantel-Haenszel statistical test to narrow down possible causal relationships between events. We evaluate LIFT with synthetic case studies, show how its performance varies with the quality of the data, and discuss practical variants of LIFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code can be found at https://github.com/M-Nauta/LIFT.

References

  1. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29ā€“62 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Discov. 2(4), 345ā€“389 (1998)

    ArticleĀ  Google ScholarĀ 

  3. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)

    Google ScholarĀ 

  4. Li, J., Ma, S., Le, T., Liu, L., Liu, J.: Causal decision trees. IEEE Trans. Knowl. Data Eng. 29(2), 257ā€“271 (2017)

    ArticleĀ  Google ScholarĀ 

  5. Mantel, N., Haenszel, W.: Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 22(4), 719ā€“748 (1959)

    Google ScholarĀ 

  6. Kabir, S.: An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst. Appl. 77, 114ā€“135 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Aizpurua, J.I., Muxika, E.: Model-based design of dependable systems: limitations and evolution of analysis and verification approaches. Int. J. Adv. Secur. 6(1ā€“2), 12ā€“31 (2013)

    Google ScholarĀ 

  8. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability analysis: state-of-the-art, challenges, and future outlook. In: Software Quality Assurance, pp. 251ā€“278. Elsevier (2016)

    Google ScholarĀ 

  9. Madden, M.G., Nolan, P.J.: Generation of fault trees from simulated incipient fault case data. WIT Trans. Inf. Commun. Technol. 6, 568ā€“569 (1994)

    Google ScholarĀ 

  10. Papadopoulos, Y., McDermid, J.: Safety-directed system monitoring using safety cases. Ph.D. thesis, University of York (2000)

    Google ScholarĀ 

  11. Li, S., Li, X.: Study on generation of fault trees from Altarica models. Procedia Eng. 80, 140ā€“152 (2014)

    ArticleĀ  Google ScholarĀ 

  12. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform. Int. J. Softw. Tools Technol. Transf. 9(1), 5 (2007)

    ArticleĀ  Google ScholarĀ 

  13. Li, Y., Zhu, Y., Ma, C., Xu, M.: A method for constructing fault trees from AADL models. In: Calero, J.M.A., Yang, L.T., MĆ”rmol, F.G., GarcĆ­a Villalba, L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 243ā€“258. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23496-5_18

    ChapterĀ  Google ScholarĀ 

  14. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality computation. Int. J. Crit. Comput.-Based Syst. 4(2), 119ā€“143 (2013)

    ArticleĀ  Google ScholarĀ 

  15. Li, J., Shi, J.: Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Trans. 39(6), 681ā€“690 (2007)

    ArticleĀ  Google ScholarĀ 

  16. Jha, S., Raman, V., Pinto, A., Sahai, T., Francis, M.: On learning sparse Boolean formulae for explaining AI decisions. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 99ā€“114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_7

    ChapterĀ  Google ScholarĀ 

  17. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5, 1287ā€“1330 (2004)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Kleinberg, S.: Why: A Guide to Finding and Using Causes. Oā€™Reilly (2015)

    Google ScholarĀ 

  19. Birch, M.: The detection of partial association, I: the 2 \(\times \) 2 case. J. Royal Stat. Soc. Ser. B (Methodological) 26, 313ā€“324 (1964)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Kearns, M., Li, M., Valiant, L.: Learning Boolean formulas. J. ACM (JACM) 41(6), 1298ā€“1328 (1994)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  21. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google ScholarĀ 

  22. Rohrer, J.M.: Thinking clearly about correlations and causation: graphical causal models for observational data (2017)

    Google ScholarĀ 

  23. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)

    Google ScholarĀ 

Download references

Acknowledgements

This research was supported by the Dutch STW project SEQUOIA (grant 15474). The authors would like to thank Joost-Pieter Katoen and Djoerd Hiemstra for valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meike Nauta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nauta, M., Bucur, D., Stoelinga, M. (2018). LIFT: Learning Fault Trees from Observational Data. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99154-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99153-5

  • Online ISBN: 978-3-319-99154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics