Skip to main content

Fluctuating Work in Coherent Quantum Systems: Proposals and Limitations

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

One of the most important goals in quantum thermodynamics is to demonstrate advantages of themodynamic protocols over their classical counterparts. For that, it is necessary to (i) develop theoretical tools and experimental set-ups to deal with quantum coherence in thermodynamic contexts, and to (ii) elucidate which properties are genuinely quantum in a thermodynamic process. In this short review, we discuss proposals to define and measure work fluctuations that allow to capture quantum interference phenomena. We also discuss fundamental limitations arising due to measurement back-action, as well as connections between work distributions and quantum contextuality. We hope the different results summarised here motivate further research on the role of quantum phenomena in thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Depending on the system and quantity being measured one may use other work definitions. For a concise review see, e.g., Ref. [44]. For our considerations, however, this choice is inconsequential.

  2. 2.

    We take the distribution to be discrete for simplicity sake.

References

  1. J. Goold, M. Huber, A. Riera, L. d. Rio, P. Skrzypczyk, The role of quantum information in thermodynamics a topical review. J. Phys. A, 49(14):143001, 2016. https://doi.org/10.1088/1751-8113/49/14/143001

  2. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016). https://doi.org/10.1080/00107514.2016.1201896

    Article  ADS  Google Scholar 

  3. J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013). https://doi.org/10.1038/ncomms2712

    Article  ADS  Google Scholar 

  4. M. Campisi, P. Hänggi, P. Talkner, Colloquium. Rev. Mod. Phys. 83(3), 771–791 (2011). https://doi.org/10.1103/RevModPhys.83.771

  5. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665–1702 (2009). https://doi.org/10.1103/RevModPhys.81.1665

  6. M. Esposito, U. Harbola, S. Mukamel, Erratum: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems [rev. mod. phys. 81, 1665 (2009)]. Rev. Mod. Phys., 86(3):1125–1125, Sep 2014. https://doi.org/10.1103/RevModPhys.86.1125

  7. C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Ann. Rev. Condens. Matter Phys. 2(1), 329–351 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140506

    Article  ADS  Google Scholar 

  8. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602

  9. L.A. Correa, J.e.P. Palao, D. Alonso, G. Adesso, Quantum-enhanced absorption refrigerators. Sci. Rep 4, 3949 (2014). https://doi.org/10.1038/srep03949

  10. R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17(11), 115012 (2015). https://doi.org/10.1088/1367-2630/17/11/115012

  11. J.B. Brask, N. Brunner, Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. Phys. Rev. E 92(6), 062101 (2015). https://doi.org/10.1103/PhysRevE.92.062101

  12. R. Uzdin, A. Levy, R. Kosloff (2015), Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X. 5(3), 031044. https://doi.org/10.1103/PhysRevX.5.031044

  13. M.T. Mitchison, M.P. Woods, J. Prior, M. Huber, Coherence-assisted single-shot cooling by quantum absorption refrigerators. New J. Phys. 17(11), 115013 (2015). https://doi.org/10.1088/1367-2630/17/11/115013

  14. P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Autonomous quantum refrigerator in a circuit qed architecture based on a josephson junction. Phys. Rev. B 94(23), 235420 (2016). https://doi.org/10.1103/PhysRevB.94.235420

  15. S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum and classical dynamics of a three-mode absorption refrigerator. Quantum 1, 37 (2017). https://doi.org/10.22331/q-2017-12-11-37

  16. K. Brandner, M. Bauer, U. Seifert, Universal coherence-induced power losses of quantum heat engines in linear response. Phys. Rev. Lett. 119(17), 170602 (2017). https://doi.org/10.1103/PhysRevLett.119.170602

  17. J. Klatzow, C. Weinzetl, P.M. Ledingham, J.N. Becker, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines (2017). arXiv:1710.08716

  18. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. EPL (Europhysics Letters) 67(4), 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

  19. K. Funo, Y. Watanabe, M. Ueda, Thermodynamic work gain from entanglement. Phys. Rev. A 88(5), 052319 (2013). https://doi.org/10.1103/PhysRevA.88.052319

  20. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Extractable work from correlations. Phys. Rev. X 5(4), 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011

  21. K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. New J. Phys 18(2), 023045 (2016). https://doi.org/10.1088/1367-2630/18/2/023045

  22. A. Misra, U. Singh, S. Bhattacharya, A.K. Pati, Energy cost of creating quantum coherence. Phys. Rev. A 93(5), 052335 (2016). https://doi.org/10.1103/PhysRevA.93.052335

  23. N. Lörch, C. Bruder, N. Brunner, P.P. Hofer, Optimal work extraction from quantum states by photo-assisted cooper pair tunneling. Quantum Science and Technology 3(3), 035014 (2018). https://doi.org/10.1088/2058-9565/aacbf3

  24. K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111(24), 240401 (2013). https://doi.org/10.1103/PhysRevLett.111.240401

  25. N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89(3), 032115 (2014). https://doi.org/10.1103/PhysRevE.89.032115

  26. R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5(3), 031044 (2015). https://doi.org/10.1103/PhysRevX.5.031044

  27. F. Campaioli, F.A. Pollock, F.C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118(15), 150601 (2017). https://doi.org/10.1103/PhysRevLett.118.150601

  28. D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120(11), 117702 (2018). https://doi.org/10.1103/PhysRevLett.120.117702

  29. G. Watanabe, B.P. Venkatesh, P. Talkner, A. del Campo, Quantum performance of thermal machines over many cycles. Phys. Rev. Lett. 118(5), 050601 (2017). https://doi.org/10.1103/PhysRevLett.118.050601

  30. P. Busch, P. Lahti, R.F. Werner, Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86(4), 1261–1281 (2014). https://doi.org/10.1103/RevModPhys.86.1261

  31. C. Jarzynski, Nonequilibrium work relations: foundations and applications. J. Euro. Phys. B 64(3), 331–340 (2008). https://doi.org/10.1140/epjb/e2008-00254-2

    Article  ADS  MathSciNet  Google Scholar 

  32. G.N. Bochkov, I.E. Kuzovlev, General theory of thermal fluctuations in nonlinear systems. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 72, 238–247 (1977)

    ADS  Google Scholar 

  33. G. Bochkov, Y. Kuzovlev, Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. generalized fluctuation-dissipation theorem. Physica A: Statistical Mechanics and its Applications, 106(3):443 – 479, 1981. https://doi.org/10.1016/0378-4371(81)90122-9

  34. S. Yukawa, A quantum analogue of the jarzynski equality. J. Phys. Soc. Japan. 69(8), 2367–2370 (2000). https://doi.org/10.1143/JPSJ.69.2367

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T. Monnai, S. Tasaki, Quantum correction of fluctuation theorem (2003). arXiv:1707.04930

  36. V. Chernyak, S. Mukamel, Effect of quantum collapse on the distribution of work in driven single molecules. Phys. Rev. Lett. 93(4), 048302 (2004). https://doi.org/10.1103/PhysRevLett.93.048302

  37. A.E. Allahverdyan, T.M. Nieuwenhuizen, Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems. Phys. Rev. E 71(6), 066102 (2005). https://doi.org/10.1103/PhysRevE.71.066102

  38. A. Engel, R. Nolte, Jarzynski equation for a simple quantum system: Comparing two definitions of work. EPL (Europhysics Letters) 79(1), 10003 (2007). https://doi.org/10.1209/0295-5075/79/10003

  39. M.F. Gelin, D.S. Kosov, Unified approach to the derivation of work theorems for equilibrium and steady-state, classical and quantum hamiltonian systems. Phys. Rev. E 78(1), 011116 (2008). https://doi.org/10.1103/PhysRevE.78.011116

  40. J. Kurchan. A quantum fluctuation theorem (2000). arXiv:cond-mat/0007360

  41. H. Tasaki. Jarzynski relations for quantum systems and some applications (2000). arXiv:cond-mat/0009244

  42. P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: Work is not an observable. Phys. Rev. E 75(5), 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

  43. P. Hänggi, P. Talkner, The other qft. Nature Physics 11(2), 108 (2017). https://doi.org/10.1038/nphys3167

  44. M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83(3), 771–791 (2011). https://doi.org/10.1103/RevModPhys.83.771

  45. M. Campisi, P. Hänggi, P. Talkner, Erratum: Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys., 83(4):1653–1653, (2011). https://doi.org/10.1103/RevModPhys.83.1653

  46. M. Campisi, P. Talkner, P. Hänggi, Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102(21), 210401 (2009). https://doi.org/10.1103/PhysRevLett.102.210401

  47. G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Employing trapped cold ions to verify the quantum jarzynski equality. Phys. Rev. Lett. 101(7), 070403 (2008). https://doi.org/10.1103/PhysRevLett.101.070403

  48. T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113(14), 140601 (2014). https://doi.org/10.1103/PhysRevLett.113.140601

  49. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Experimental test of the quantum jarzynski equality with a trapped-ion system. Nature Physics 11(2), 193 (2014). https://doi.org/10.1038/nphys3197

  50. F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Using a quantum work meter to test non-equilibrium fluctuation theorems. Nat. Commun. 8(1), 1241 (2017). https://doi.org/10.1038/s41467-017-01308-7

  51. C. Jarzynski, H.T. Quan, S. Rahav, Quantum-classical correspondence principle for work distributions. Phys. Rev. X 5(3), 031038 (2015). https://doi.org/10.1103/PhysRevX.5.031038

  52. L. Zhu, Z. Gong, B. Wu, H.T. Quan, Quantum-classical correspondence principle for work distributions in a chaotic system. Phys. Rev. E 93(6), 062108 (2016). https://doi.org/10.1103/PhysRevE.93.062108

  53. A.E. Allahverdyan, Nonequilibrium quantum fluctuations of work. Phys. Rev. E 90(3), 032137 (2014). https://doi.org/10.1103/PhysRevE.90.032137

  54. P. Solinas, S. Gasparinetti, Full distribution of work done on a quantum system for arbitrary initial states. Phys. Rev. E 92(4), 042150 (2015). https://doi.org/10.1103/PhysRevE.92.042150

  55. P. Kammerlander, J. Anders, Coherence and measurement in quantum thermodynamics. Scientific reports 6, 22174 (2016). https://doi.org/10.1038/srep22174

    Article  ADS  Google Scholar 

  56. S. Deffner, J.P. Paz, W.H. Zurek, Quantum work and the thermodynamic cost of quantum measurements. Phys. Rev. E 94(1), 010103 (2016). https://doi.org/10.1103/PhysRevE.94.010103

  57. M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, No-go theorem for the characterization of work fluctuations in coherent quantum systems. Phys. Rev. Lett. 118(7), 070601 (2017). https://doi.org/10.1103/PhysRevLett.118.070601

  58. G. Watanabe, B.P. Venkatesh, P. Talkner, Generalized energy measurements and modified transient quantum fluctuation theorems. Phys. Rev. E 89(5), 052116 (2014). https://doi.org/10.1103/PhysRevE.89.052116

  59. B.P. Venkatesh, G. Watanabe, P. Talkner, Quantum fluctuation theorems and power measurements. New J. Phys. 17(7), 075018 (2015). https://doi.org/10.1088/1367-2630/17/7/075018

  60. M. Esposito, C.V. den Broeck, Second law and landauer principle far from equilibrium. EPL (Europhysics Letters) 95(4), 40004 (2011). https://doi.org/10.1209/0295-5075/95/40004

  61. D. Janzing, Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components. J. Stat. Phys. 125(3), 761–776 (2006). https://doi.org/10.1007/s10955-006-9220-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015). https://doi.org/10.1038/ncomms7383

    Article  ADS  Google Scholar 

  63. J.J. Alonso, E. Lutz, A. Romito, Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett. 116(8), 080403 (2016). https://doi.org/10.1103/PhysRevLett.116.080403

  64. C. Elouard, D.A. Herrera-Martí, M. Clusel, A. Auffeves, The role of quantum measurement in stochastic thermodynamics. npj Quantum Information, 3(1), 9 (2017). https://doi.org/10.1038/s41534-017-0008-4

  65. A.J. Roncaglia, F. Cerisola, J.P. Paz, Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 113(25), 250601 (2014) https://doi.org/10.1103/PhysRevLett.113.250601

  66. G.D. Chiara, A.J. Roncaglia, J.P. Paz, Measuring work and heat in ultracold quantum gases. New J. Phys. 17(3), 035004 (2015). https://doi.org/10.1088/1367-2630/17/3/035004

  67. P. Talkner, P. Hänggi, Aspects of quantum work. Phys. Rev. E 93(2), 022131 (2016). https://doi.org/10.1103/PhysRevE.93.022131

  68. P. Solinas, H.J.D. Miller, J. Anders, Measurement-dependent corrections to work distributions arising from quantum coherences. Phys. Rev. A 96(5), 052115 (2017). https://doi.org/10.1103/PhysRevA.96.052115

  69. P.P. Hofer, Quasi-probability distributions for observables in dynamic systems. Quantum 1, 32 (2017). https://doi.org/10.1103/PhysRevA.96.052115

    Article  Google Scholar 

  70. R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, T.G. Philbin, Quantum work in the bohmian framework. Phys. Rev. A 97(1), 012131 (2018). https://doi.org/10.1103/PhysRevA.97.012131

  71. M. Lostaglio, Quantum fluctuation theorems, contextuality, and work quasiprobabilities. Phys. Rev. Lett. 120(4), 040602 (2018). https://doi.org/10.1103/PhysRevLett.120.040602

  72. A.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Fluctuating work: From quantum thermodynamical identities to a second law equality. Phys. Rev. X 6(4), 041017 (2016). https://doi.org/10.1103/PhysRevX.6.041017

  73. J.G. Richens, L. Masanes, Work extraction from quantum systems with bounded fluctuations in work. Nat. Commun. 7, 13511 (2016) https://doi.org/10.1038/ncomms13511

  74. J. Åberg, Fully quantum fluctuation theorems. Phys. Rev. X 8(1), 011019 (2018). https://doi.org/10.1103/PhysRevX.8.011019

  75. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966). https://doi.org/10.1103/RevModPhys.38.447

  76. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. In The Logico-Algebraic Approach to Quantum Mechanics, p. 293–328. Springer, 1975. https://doi.org/10.1007/978-94-010-1795-4_17

  77. M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality supplies the/magic/’for quantum computation. Nature 510(7505), 351–355 (2014). https://doi.org/10.1038/nature13460

    Article  ADS  Google Scholar 

  78. N. Delfosse, P.A. Guerin, J. Bian, R. Raussendorf, Wigner function negativity and contextuality in quantum computation on rebits. Phys. Rev. X 5(2), 021003 (2015). https://doi.org/10.1103/PhysRevX.5.021003

    Article  Google Scholar 

  79. J. Bermejo-Vega, N. Delfosse, D.E. Browne, C. Okay, R. Raussendorf, Contextuality as a resource for models of quantum computation with qubits. Phys. Rev. Lett. 119(12), 120505 (2017). https://doi.org/10.1103/PhysRevLett.119.120505

  80. R.W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005). https://doi.org/10.1103/PhysRevA.71.052108

    Article  ADS  MathSciNet  Google Scholar 

  81. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014). https://doi.org/10.1103/RevModPhys.86.419

  82. P. Solinas, S. Gasparinetti, Probing quantum interference effects in the work distribution. Phys. Rev. A 94(5), 052103 (2016). https://doi.org/10.1103/PhysRevA.94.052103

  83. B.-M. Xu, J. Zou, L.-S. Guo, X.-M. Kong, Effects of quantum coherence on work statistics. Phys. Rev. A 97(5), 052122 (2018). https://doi.org/10.1103/PhysRevA.97.052122

  84. Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351

  85. H.M. Wiseman, Weak values, quantum trajectories, and the cavity-qed experiment on wave-particle correlation. Phys. Rev. A 65(3), 032111 (2002). https://doi.org/10.1103/PhysRevA.65.032111

  86. H.J.D. Miller, J. Anders, Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework. New J. Phys. 19(6), 062001 (2017). https://doi.org/10.1088/1367-2630/aa703f

  87. J.W. Hall, Prior information: How to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 69(5), 052113 (2004). https://doi.org/10.1103/PhysRevA.69.052113

  88. R.B. Griffiths, Consistent histories and the interpretation of quantum mechanics. J. Stat. Phy. 36(1–2), 219–272 (1984). https://doi.org/10.1007/BF01015734

  89. S. Goldstein, D.N. Page, Linearly positive histories: probabilities for a robust family of sequences of quantum events. Phys. Rev. Lett, 74(19):3715, 1995. https://doi.org/10.1103/PhysRevLett.74.3715

  90. T. Sagawa, Second law-like inequalities with quantum, relative entropy: An introduction, pages 125–190. World Scientific, 2012. https://doi.org/10.1142/9789814425193_0003

  91. M.F. Pusey, Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113(20), 200401 (2014). https://doi.org/10.1103/PhysRevLett.113.200401

  92. N.S. Williams, A.N. Jordan, Weak values and the leggett-garg inequality in solid-state qubits. Phys. Rev. Lett. 100(2), 026804 (2008). https://doi.org/10.1103/PhysRevLett.100.026804

  93. R. Blattmann, K. Mølmer, Macroscopic realism of quantum work fluctuations. Physical Review A 96(1), 012115 (2017). https://doi.org/10.1103/PhysRevA.96.012115

    Article  ADS  Google Scholar 

  94. H.J.D. Miller, J. Anders, Leggett-garg inequalities for quantum fluctuating work. Entropy, 20(3), 2018. https://doi.org/10.3390/e20030200

  95. D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev. I 85(2), 166–179 (1952). https://doi.org/10.1103/PhysRev.85.166

  96. D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev. II 85(2), 180–193 (1952). https://doi.org/10.1103/PhysRev.85.180

  97. L. De Broglie, L’interprétation de la mécanique ondulatoire. J. Phys. Radium. 20(12), 963–979 (1959). https://doi.org/10.1051/jphysrad:019590020012096300

  98. P.R. Holland, The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics. Cambridge university press, 1995

    Google Scholar 

  99. D. Dürr, S. Goldstein, N. Zanghì, Quantum physics without quantum philosophy. Springer Science & Business Media, 2013. https://doi.org/10.1007/978-3-642-30690-7

  100. Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988). https://doi.org/10.1103/PhysRevLett.60.1351

  101. I.M. Duck, P.M. Stevenson, E.C.G. Sudarshan, The sense in which a "weak measurement" of a spin particle’s spin component yields a value 100. Phys. Rev. D 40(6), 2112–2117 (1989). https://doi.org/10.1103/PhysRevD.40.2112

  102. S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, A.M. Steinberg, Observing the average trajectories of single photons in a two-slit interferometer. Science, 332(6034):1170–1173, (2011). https://doi.org/10.1126/science.1202218

  103. D.H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K.J. Resch, H.M. Wiseman, A. Steinberg, Experimental nonlocal and surreal bohmian trajectories. Science Advances 2(2), e1501466 (2016). https://doi.org/10.1126/sciadv.1501466

    Article  ADS  Google Scholar 

  104. Y. Xiao, Y. Kedem, J.-S. Xu, C.-F. Li, G.-C. Guo, Experimental nonlocal steering of bohmian trajectories. Opt. Express 25(13), 14463–14472 (2017). https://doi.org/10.1364/OE.25.014463

    Article  ADS  Google Scholar 

  105. H. Pashayan, J.J. Wallman, S.D. Bartlett, Estimating outcome probabilities of quantum circuits using quasiprobabilities. Physical review letters 115(7), 070501 (2015). https://doi.org/10.1103/PhysRevLett.115.070501

  106. H. Pashayan, J.J. Wallman, S.D. Bartlett, Quantum features and signatures of quantum-thermal machines (2018). arXiv:1803.05586

  107. S. Pironio, A. Acín, S. Massar, A.B. de La Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning et al., Random numbers certified by bell theorem. Nature 464(7291), 1021 (2010). https://doi.org/10.1038/nature09008

    Article  ADS  Google Scholar 

  108. M.D. Mazurek, M.F. Pusey, R. Kunjwal, K.J. Resch, R.W. Spekkens, An experimental test of noncontextuality without unphysical idealizations. Nat. Commun. 7:ncomms11780, (2016). https://doi.org/10.1038/ncomms11780

  109. P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185

  110. J. Åberg, Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014). https://doi.org/10.1103/PhysRevLett.113.150402

  111. D. Reeb, M.M. Wolf, An improved landauer principle with finite-size corrections. New J. Phys. 16(10), 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011

Download references

Acknowledgements

We thank Johan Åberg, Armen Allahverdyan, Janet Anders, Peter Hänggi, Simone Gasparinetti, Paolo Solinas and Peter Talkner for useful feedback on the manuscript. E.B. acknowledges contributions from the Swiss National Science Foundation via the NCCR QSIT as well as project No. 200020_165843. M.P.-L. acknowledges support from the Alexander von Humboldt Foundation. M.L. acknowledges financial support from the the European Union’s Marie Sklodowska-Curie individual Fellowships (H2020-MSCA-IF-2017, GA794842), Spanish MINECO (Severo OchoaSEV-2015-0522 and project QIBEQI FIS2016-80773-P), Fundacio Cellex and Generalitat de Catalunya (CERCAProgramme and SGR 875). R. S. acknowledges the Magnus Ehrnrooth Foundation and the Academy of Finland through its CoE grants 284621 and 287750. All authors are grateful for support from the EU COST Action MP1209 on Thermodynamics in the Quantum Regime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Bäumer .

Editor information

Editors and Affiliations

Appendix: Loss in Maximal Amount of Average Extractable Work Due to Energy Measurement

Appendix: Loss in Maximal Amount of Average Extractable Work Due to Energy Measurement

The maximal average amount of work that can be extracted from a quantum system in state \(\rho \) with internal Hamiltonian \(H_S\) and unitary operations on systems and a thermal bath at temperature T is

$$\begin{aligned} \langle W \rangle _{max}(\rho ) = F(\rho ,H_S) - F(\tau ,H_S) \equiv kT S(\rho ||\tau ), \end{aligned}$$
(11.15)

where \(\tau = \frac{e^{-\beta H_S}}{Z}\), \(Z = \mathrm {Tr}{}{[e^{-\beta H_S}]}\), \(\beta = 1/(kT)\) with k Boltzmann constant, \(F(X,H) = \mathrm {Tr}{}{[H X]} - kT S(X)\) with \(S(X):= - \mathrm {Tr}{}{[X \log X]}\) the von Neumann entropy, \(S(X||Y):= \mathrm {Tr}{}{[X (\log X - \log Y)]}\) the quantum relative entropy.

The result (11.15) can be inferred from, e.g., the derivations in [60, 109,110,111]. However, for clarity of the exposition, we present here a simple proof. Consider a bipartite system SB with an initial non-interacting Hamiltonian

$$\begin{aligned} H=H_\mathrm{S}+H_\mathrm{B}, \end{aligned}$$
(11.16)

prepared in a product state

$$\begin{aligned} \rho _{SB}=\rho _\mathrm{S}\otimes \rho _\mathrm{B}, \end{aligned}$$
(11.17)

with B a Gibbs state at inverse temperature \(\beta = (kT)^{-1}\):

$$\begin{aligned} \rho _\mathrm{B}=\tau _{B}=\frac{e^{-\beta H_\mathrm{B}}}{\mathcal {Z}}. \end{aligned}$$
(11.18)

Hence we can think of B as an auxiliary thermal state. Note that B is not necessarily a thermal bath, in the sense that it may not be macroscopic. We now consider a generic closed evolution in SB, which can always be described as a unitary operation U:

$$\begin{aligned} \rho '_{SB}=U \rho _S \otimes \rho _B U^{\dagger }, \end{aligned}$$
(11.19)

The average extracted work is given by the energy change on SB,

$$\begin{aligned} W=\mathrm {Tr}[H \rho _{SB}]-\mathrm {Tr}[H \rho '_{SB}] = F(\rho _{SB},H) - F(\rho '_{SB},H), \end{aligned}$$
(11.20)

where we assumed that at the end of the interaction the final Hamiltonian is again H, and for the second equality we used \(S(\rho '_{SB}) = S(\rho _{SB})\).

For any bipartite system \(X_{SB}\) with Hamiltonian H, denoting by \(X_{S/B} = \mathrm {Tr}_{B/S}X_{SB}\), one has that the non-equilibrium free energy decomposes into local parts plus correlations:

$$\begin{aligned} F(X_{SB}, H) = F(X_S,H_S) + F(X_B,H_B) + kT I(X_{SB}), \end{aligned}$$
(11.21)

where \(I(X_{SB}) = S(X_S) + S(X_B) - S(X_{SB})\) is the mutual information (this can be verified by summing and subtracting the local entropies to the expression for \(F(X_{SB}, H)\)).

Denoting now \(\rho '_{S/B}=\mathrm {Tr}_{B/S}[\rho '_{SB}]\) and using the formula above, together with the fact that \(I(\rho _{SB}) = 0\), we obtain

$$\begin{aligned} W&=F(\rho _S,H_S)-F(\rho '_S,H_S) +F(\rho _B,H_B)-F(\rho '_B,H_B) -kT I(\rho '_{SB}) \nonumber \\&=F(\rho _S,H_S)-F(\rho '_S,H_S) -kT (S(\rho '_{B}||\tau _B) +I(\rho '_{SB})), \end{aligned}$$
(11.22)

where we used \(F(\rho '_B,H_B)-F(\tau _B,H_B)=kT S(\gamma _B||\tau _{B})\). As both \(I(\cdot )\) and \(S(\cdot ||\cdot )\) are non-negative quantities, we immediately obtain

$$\begin{aligned} W\le F(\rho _S,H_S)-F(\rho '_S,H_S). \end{aligned}$$
(11.23)

Note that this expression only depends on the (initial and final) state of S and the temperature of B. We can obtain a bound that is independent of the final state by adding and subtracting \(F(\tau _S,H_S)\) in Eq. (11.22) (where \( \tau _\mathrm{S}=e^{-\beta H_S}/\mathrm {Tr}(e^{-\beta H_S})\)), which gives

$$\begin{aligned} W= F(\rho _\mathrm{S},H_S)-F(\tau _\mathrm{S},H_S)-T\left[ S(\rho '_S||\tau _\mathrm{S})+I(\rho '_{SB})+S(\rho '_B||\tau _\mathrm{B}) \right] , \end{aligned}$$
(11.24)

Note again that all terms in the square parenthesis are non-negative, and each of them has an intuitive physical meaning: in order of appearance, the athermality of the final state of S (when \(\rho '_S\ne \tau _S\)), the correlations created between S and B, and the athermality of final state of B (when \(\rho '_B \ne \tau _B\)). With the above equality we finally obtain

$$\begin{aligned} W\le F(\rho _{S},H_S)-F(\tau _{S},H_S) = \langle W \rangle _{max}(\rho ). \end{aligned}$$
(11.25)

The remaining interesting question is whether these bounds can be saturated: protocols that achieve (11.15) are constructed in [109,110,111] which, interestingly, require B to be of macroscopic size.

We now move to the question of how energy measurements change Eq. (11.15), by making it unattainable. For simplicity of exposition, we will assume that \(H_S\) is not degenerate. If one performs an energy measurement, one obtains a pure energy state \(E_i\) with probability \(p_i = \langle E_i| \rho |E_i\rangle \). Using Eq. (11.15), one can see that from state \(|E_i\rangle \) one can extract a maximum amount of work equal to \( F(|E_i\rangle ) - F(\tau ) = E_i + kT \log Z\) (this can be understood as the conjunction of the unitary process that maps \(|E_i\rangle \) into the ground state, extracting energy \(E_i\), followed by a protocol that extracts work \(kT \log Z\) from the purity of the ground state). To complete the process one needs to reset the memory, implicitly used in the measurement, to its “blank state”; in the presence of a bath at temperature T, this requires an investment of \(kT H(\mathbf {p})\), where \(\mathbf {p}\) is the distribution \(p_i\) and \(H(\mathbf {p}) = - \sum _i p_i \log p_i\) is the Shannon entropy (this is known as Landauer erasure). Overall the protocol that extracts work after an energy measurement optimally achieves the average \(\langle W \rangle _{meas}(\rho ) = \sum _i p_i E_i - kT H(\mathbf {p}) + kT \log Z\). A direct calculation shows \(\langle W \rangle _{meas} = F(\mathcal {D}(\rho )) - F(\tau )\), with \(\mathcal {D}\) the dephasing operation \(\mathcal {D}(\rho ) = \sum _i p_i |E_i\rangle \langle E_i|\). This implies

$$\begin{aligned} \langle W \rangle _{meas}(\rho ) = \langle W \rangle _{max}(\mathcal {D}(\rho )), \end{aligned}$$
(11.26)

i.e. the energy measurement protocol optimally extracts an average amount of work equal to the maximum that can be extracted by first dephasing the state and then performing work extraction. This implies a loss

$$\begin{aligned} \langle W \rangle _{max}(\rho ) - \langle W \rangle _{max}(\mathcal {D}(\rho )) = kT S(\mathcal {D}(\rho )) - kT S(\rho ) \equiv kT S(\rho ||\mathcal {D}(\rho )):= kT A(\rho ), \end{aligned}$$
(11.27)

proportional to a quantity \(A(\rho )\) called asymmetry or relative entropy of coherence, which is a measure of quantum coherence in the eigenbasis of \(H_S\). Note that \(A(\rho ) > 0\) if and only if \(\rho \ne \mathcal {D}(\rho )\).

The above reasoning shows that protocols based on energy measurements cannot reach the optimal average work extraction, since they lose the possibility of extracting work from the coherence of the quantum state. This intuition can also be grounded in the non equilibrium free energy. As we discussed above, \(\langle W \rangle _{max}(\rho ) = \Delta F (\rho ) := F(\rho ) - F(\tau )\). Summing and subtracting \(\Delta F(\mathcal {D}(\rho )) = F(\mathcal {D}(\rho )) - F(\tau )\) one obtains, using the definition of \(A(\rho )\),

$$\begin{aligned} \Delta F(\rho ) = \Delta F(\mathcal {D}(\rho )) + kT A(\rho ), \end{aligned}$$
(11.28)

i.e. the non-equilibrium free energy neatly decomposes into a contribution coming from the diagonal part of the state and a contribution coming from coherence [61, 62]. As discussed above, \(\langle W \rangle _{meas} = \Delta F(\mathcal {D}(\rho ))\), i.e. the diagonal non-equilibrium free energy captures the component that can be converted into work by the energy measurement protocol, whereas the coherent contribution is lost. One has \(\Delta F(\rho )>\Delta F(\mathcal {D}(\rho ))\) whenever \([\rho ,H_S]\ne 0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bäumer, E., Lostaglio, M., Perarnau-Llobet, M., Sampaio, R. (2018). Fluctuating Work in Coherent Quantum Systems: Proposals and Limitations. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_11

Download citation

Publish with us

Policies and ethics