Skip to main content

Castor Bean Metabolomics: Current Knowledge and Perspectives Toward Understanding of Plant Plasticity Under Stress Condition

  • Chapter
  • First Online:
The Castor Bean Genome

Abstract

Metabolomics provides vital information for the understanding of biological processes and has been vastly applied in plant studies. Several metabolite-profiling studies have correlated physiological events, such as germination or seedling establishment, with metabolic and molecular changes under different environmental conditions. Castor bean displays high plasticity during initial vegetative growth, which is reflected in the metabolome of the seeds and seedlings. In general, several metabolite-profiling techniques are required to obtain a complete response in terms of metabolism plasticity of the studied biological system. Carbohydrates, amino acids, and organic acids have been measured in castor bean seeds and seedlings by nuclear magnetic resonance, gas chromatography coupled to a quadrupole time of flight mass spectrometry (GC-TOF-MS), as well as by high-performance liquid chromatography (HPLC). Fatty acids and some secondary metabolites have been quantified in castor bean seeds and seedlings by gas chromatography coupled to a triple-axis detector (GC-MS). In this chapter, we initially discuss how metabolomics studies suggested a possible role of gamma-aminobutyric acid (GABA) accumulation during early imbibitions and seedling establishment. Later, we consider a specific metabolic signature of castor bean: a shift in carbon–nitrogen metabolism as its main biochemical response to high temperatures. This metabolic shift is usually associated with adjusted growth, and it is likely involved in maintaining cellular homeostasis under heat stress. The castor bean metabolome has been vastly investigated, especially with regard to its ability to respond to external stimuli. These results might help us understand the molecular requirements for vigorous castor bean seed germination and seedling growth under different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akçay N, Bor M, Karabudak T, Özdemir F, Türkan T (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169(5):452–458

    Article  CAS  PubMed  Google Scholar 

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55(3):365–378

    Google Scholar 

  • Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD (2010) Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Analyt Chem 29(2):111–119

    Google Scholar 

  • Bagas CK, Scadding RL, Scadding CJ, Watling RJ, Roberts W, Ovenden SPB (2017) Trace isotope analysis of Ricinus communis seed core for provenance determination by laser ablation-ICP-MS. Forensic Sci Int 270:46–54

    Article  CAS  PubMed  Google Scholar 

  • Barbas C, Moraes EP, Villasenor A (2011) Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharmaceut Biomed Anal 55(4):823–831

    Article  CAS  Google Scholar 

  • Bartyzel I, Pelczar K, Paszkowski A (2004) Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol Plant 47(2):221–225

    Article  Google Scholar 

  • Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain: Cloning, sequence, and functional analysis. J Biol Chem 268(26):19610–19617

    CAS  PubMed  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15(12):2988–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds—physiology of development, germination and dormancy. Springer, New York

    Google Scholar 

  • Bor M, Seckin B, Ozgur R, Yilmaz O, Ozdemir F, Turkan I (2009) Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.). Acta Physiol Plant 31(3):655–659

    Google Scholar 

  • Botha FC, Potgieter GP, Botha AM (1992) Respiratory metabolism and gene expression during seed germination. Plant Growth Regul 11(3):211–224

    Article  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: Just a metabolite? Trends Plant Sci 9(3):110–115

    Article  CAS  PubMed  Google Scholar 

  • Buchwal A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H (2013) Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol 36(9):1305–1318

    Article  Google Scholar 

  • Bylesjo M, Eriksson D, Kusano M, Moritz T, Trygg J (2007) Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J 52(6):1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Canam T, Li X, Holowachuk J, Yu M, Xia J, Mandal R, Krishnamurthy R, Bouatra S, Sinelnikov I, Yu B, Grenkow L, Wishart DS, Steppuhn H, Falk KC, Dumonceaux TJ, Gruber MY (2013) Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines. Plant Sci 198:17–26

    Article  CAS  PubMed  Google Scholar 

  • Canuto GAB, da Cruz PLR, Faccio AT, Klassen A, Tavares MFM (2015) Neglected diseases prioritized in Brazil under the perspective of metabolomics: a review. Electrophoresis 36(18):2336–2347

    Article  CAS  PubMed  Google Scholar 

  • Cavill R, Jennen D, Kleinjans J, Briedé JJ (2016) Transcriptomic and metabolomic data integration. Brief Bioinformat 17(5):891–901

    Article  Google Scholar 

  • Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37(7):1641–1655

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101(42):15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daub CO, Kloska S, Selbig J (2003) MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19(17):2332–2333

    Article  CAS  PubMed  Google Scholar 

  • de Raad M, Fischer CR, Northen TR (2016) High-throughput platforms for metabolomics. Curr Opin Chem Biol 30:7–13

    Article  CAS  PubMed  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276(43):39586–39591

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Silva DB, Silva RR, Vencio RZ, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31(6):784–806

    Article  CAS  PubMed  Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142(3):839–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2(3):155–168

    Article  CAS  Google Scholar 

  • Figueroa-Pérez MG, Rocha-Guzmán NE, Pérez-Ramírez IF, Mercado-Silva E, Reynoso-Camacho R (2014) Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress. J Agric Food Chem 62(49):12027–12033

    Article  CAS  PubMed  Google Scholar 

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Meth Mol Biol 708:191–204

    Article  CAS  Google Scholar 

  • Garcia A, Godzien J, Lopez-Gonzalvez A, Barbas C (2017) Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 9(1):99–130

    Article  CAS  PubMed  Google Scholar 

  • Glaubitz U, Li X, Schaedel S, Erban A, Sulpice R, Kopka J, Hincha DK, Zuther E (2017) Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. Plant Cell Environ 40(1):121–137

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Casati DF, Zanor MI, Busi MV (2013) Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. Biomed Res Int 2013:792527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant 124(2):236–248

    Article  CAS  Google Scholar 

  • Guo P, Wang J, Dong G, Wei D, Li M, Yang M, Kong L (2014) NMR-based metabolomics approach to study the chronic toxicity of crude ricin from castor bean kernels on rats. Mol BioSyst 10(9):2426–2440

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Wei D, Wang J, Dong G, Zhang Q, Yang M, Kong L (2015) Chronic toxicity of crude ricinine in rats assessed by 1H NMR metabolomics analysis. RSC Adv 5(34):27018–27028

    Article  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132(2):220–235

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14(5):9643–9684

    Article  CAS  Google Scholar 

  • Heber U, Tyankova L, Santarius KA (1971) Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. BBA Biomembr 241(2):578–592

    Article  CAS  Google Scholar 

  • Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149(2):961–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Zhang Y, Chen Y, Lin G (2018) Dynamic metabolic profiling in vegetable soybean seed development. Emirates J Food Agri 30(2):90–98

    Google Scholar 

  • Jia X, Sun C, Zuo Y, Li G, Li G, Ren L, Chen G (2016) Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. BMC Genomics 17:188

    Google Scholar 

  • Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P (2017) Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 18:496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50(6):967–981

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11(23):1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509

    Article  CAS  Google Scholar 

  • Klassen A, Faccio AT, Canuto GAB, da Cruz PLR, Ribeiro HC, Tavares MFM, Sussulini A (2017) Metabolomics: definitions and significance in systems biology. Metabolomics: from fundamentals to clinical applications. Springer International Publishing, Cham, pp 3–17

    Google Scholar 

  • Kloos D-P, Lingeman H, Niessen WMA, Deelder AM, Giera M, Mayboroda OA (2013) Evaluation of different column chemistries for fast urinary metabolic profiling. J Chromatogr B 927:90–96

    Article  CAS  Google Scholar 

  • Kobr MJ, Beevers H (1971) Gluconeogenesis in Castor bean endosperm. 1. Changes in glycolytic intermediates. Plant Physiol 47(1):48–52

    Google Scholar 

  • Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7(3):307–328

    Article  CAS  PubMed  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwchter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51(4):546–553

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013) Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass. J Amer Soc Hortic Sci 138(5):358–366

    Article  Google Scholar 

  • Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113(4):2437–2468

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Cao KA, Gonzalez I, Dejean S (2009) integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 25(21):2855–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewicka S, Pietruszka M (2006) Theoretical search for the growth-temperature relationship in plants. Gen Physiol Biophys 25(2):125–136

    CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: A review. Intl Agrophys 27(4):463–477

    Article  Google Scholar 

  • Liu S, Yin X, Lu J, Liu C, Bi C, Zhu H, Shi Y, Zhang D, Wen D, Zheng J, Cui Y, Li W (2016) The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Indust Crop Prod 89:103–108

    Article  CAS  Google Scholar 

  • Liu X, Gao Y, Khan S, Duan G, Chen A, Ling L, Zhao L, Liu Z, Wu X (2008) Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J Environ Sci 20(12):1469–1474

    Article  CAS  Google Scholar 

  • Locy RD, Singh NK, Cherry JH (1996) GABA accumulation during heat stress in Arabidopsis. Plant Physiol 111(2):194

    Google Scholar 

  • Manach C, Hubert J, Llorach R, Scalbert A (2009) The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res 53(10):1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Merkouropoulos G, Kapazoglou A, Drosou V, Jacobs E, Krolzig A, Papadopoulos C, Hilioti Z (2016) Dwarf hybrids of the bioenergy crop Ricinus communis suitable for mechanized harvesting reveal differences in morpho-physiological characteristics and seed metabolic profiles. Euphytica 210(2):207–219

    Article  CAS  Google Scholar 

  • Mibei EK, Owino WO, Ambuko J, Giovannoni JJ, Onyango AN (2018) Metabolomic analyses to evaluate the effect of drought stress on selected African Eggplant accessions. J Sci Food Agric 98(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Milani M, de Medeiros Nóbrega MB (2013) Castor breeding. Plant breeding from laboratories to fields. InTech. https://doi.org/10.5772/56216

  • Nass L, Pereira A, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47(6). https://doi.org/10.2135/cropsci2007.03.0166

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69(19):3225–3243. https://doi.org/10.1007/s00018-012-1091-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97(9):1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Ovenden SPB, Gordon BR, Bagas CK, Muir B, Rochfort S, Bourne DJ (2010) A study of the metabolome of Ricinus communis for forensic applications. Austral J Chem 63(1):8–21

    Article  CAS  Google Scholar 

  • Ovenden SPB, Pigott EJ, Rochfort S, Bourne DJ (2014) Liquid chromatography-mass spectrometry and chemometric analysis of ricinus communis extracts for cultivar identification. Phytochem Anal 25(5):476–484

    Article  CAS  PubMed  Google Scholar 

  • Palma F, Carvajal F, Lluch C, Jamilena M, Garrido D (2014) Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant Sci 217–218:78–86

    Article  CAS  PubMed  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in arabidopsis. Plant Physiol 136(2):3148–3158

    Google Scholar 

  • Pigott EJ, Roberts W, Ovenden SPB, Rochfort S, Bourne DJ (2012) Metabolomic investigations of Ricinus communis for cultivar and provenance determination. Metabolomics 8(4):634–642

    Article  CAS  Google Scholar 

  • Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS ONE 6(2):e16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Hua L, Zhao L, Zhou L (2011) Carbohydrate metabolism in tomato (Lycopersicon esculentum Mill.) seedlings and yield and fruit quality as affected by low night temperature and subsequent recovery. Afr J Biotechnol 10(30):5743–5749

    Google Scholar 

  • Qiu Z, Wu X, Zhang J, Huang C (2018) High-temperature induced changes of extracellular metabolites in Pleurotus ostreatus and their positive effects on the growth of Trichoderma asperellum. Front Microbiol 9(JAN)

    Google Scholar 

  • Raterink R-J, Lindenburg PW, Vreeken RJ, Ramautar R, Hankemeier T (2014) Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics. TrAC Trends Analyt Chem 61:157–167

    Article  CAS  Google Scholar 

  • Ribeiro PR (2015) Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach. Plant Physiology Department. Wageningen University, The Netherlands, p 203

    Google Scholar 

  • Ribeiro PR, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2014) Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol 14(1):223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro PR, Ligterink W, Hilhorst HWM (2015a) Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature. Plant Physiol Biochem 95:103–112

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro PR, Willems LAJ, Mudde E, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015b) Metabolite profiling of the oilseed crop Ricinus communis during early seed imbibition reveals a specific metabolic signature in response to temperature. Indust Crop Prod 67:305–309

    Article  CAS  Google Scholar 

  • Ribeiro PR, Willems LAJ, Mutimawurugo MC, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015c) Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. Plant Sci (under review)

    Google Scholar 

  • Ribeiro PR, Zanotti RF, Deflers C, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM (2015d) Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis. J Plant Physiol 185:31–39

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696

    Google Scholar 

  • Romeiro S, Lagôa AMMA, Furlani PR, De Abreu CA, De Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Brazn J Plant Physiol 18(4):483–489

    Article  CAS  Google Scholar 

  • Sánchez-Linares L, Gavilanes-Ruíz M, Díaz-Pontones D, Guzmán-Chávez F, Calzada-Alejo V, Zurita-Villegas V, Luna-Loaiza V, Moreno-Sánchez R, Bernal-Lugo I, Sánchez-Nieto S (2012) Early carbon mobilization and radicle protrusion in maize germination. J Exp Bot 63(12):4513–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sausen TL, Rosa LMG (2010) Growth and limitations to carbon assimilation in Ricinus communis (Euphorbiaceae) under soil water stress conditions. Acta Bot Brasil 24(3):648–654

    Article  Google Scholar 

  • Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, McGrath SC, Morse SA, Barr JR (2015) Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon 95:72–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Severino LS, Auld DL, Baldanzi M, Cândido MJD, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of castor. Agron J 104(4):853–880

    Article  Google Scholar 

  • Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B 54(1):37–45

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4(11):446–452

    Article  CAS  PubMed  Google Scholar 

  • Silva AT, Ligterink W, Hilhorst HWM (2017) Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Plant Mol Biol 95(4–5):481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva César A, Otávio Batalha M (2010) Biodiesel production from castor oil in Brazil: a difficult reality. Energy Policy 38(8):4031–4039

    Article  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ, Saito K (2015) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32(2):212–229

    Article  CAS  PubMed  Google Scholar 

  • Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC Trends Analyt Chem 27(3):251–260

    Article  CAS  Google Scholar 

  • Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Analyt Chim Acta 711:7–16

    Article  CAS  Google Scholar 

  • Tian H, Lam SM, Shui G (2016) Metabolomics, a powerful tool for agricultural research. Int J Mol Sci 17(11)

    Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49(5–6):645–651

    Article  CAS  PubMed  Google Scholar 

  • Vijaya Kumar P, Ramakrishna YS, Ramana Rao BV, Victor US, Srivastava NN, Subba Rao AVM (1997) Influence of moisture, thermal and photoperiodic regimes on the productivity of castor beans (Ricinus communis L.). Agric Forest Meteorol 88(1–4):279–289

    Google Scholar 

  • Vijayakumari K, Puthur JT (2015) γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul

    Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectromet Rev 24(5):613–646

    Article  CAS  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Botany 62(10):3289–3309

    Article  CAS  Google Scholar 

  • Wenzel A, Frank T, Reichenberger G, Herz M, Engel KH (2014) Impact of induced drought stress on the metabolite profiles of barley grain. Metabolomics 11(2):454–467

    Article  CAS  Google Scholar 

  • Woodstock LW (1988) Seed imbibition: a critical period for successful germination. J Seed Technol 12(1):1–15

    Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8(1)

    Google Scholar 

  • Xiayan L, Legido-Quigley C (2008) Advances in separation science applied to metabonomics. Electrophoresis 29(18):3724–3736

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117

    Article  CAS  PubMed  Google Scholar 

  • Yaniv Z, Shabelsky E, Schafferman D, Granot I, Kipnis T (1998) Oil and fatty acid changes in Sinapis and Crambe seeds during germination and early development. Indust Crop Prod 9(1):1–8

    Article  CAS  Google Scholar 

  • Zhang W, Song L, Teixeira da Silva JA, Sun H (2013) Effects of temperature, plant growth regulators and substrates and changes in carbohydrate content during bulblet formation by twin scale propagation in Hippeastrum vittatum ‘Red lion’. Sci Hort 160:230–237

    Article  CAS  Google Scholar 

  • Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B (2014) Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS ONE 9(9)

    Google Scholar 

  • Zhao XQ, Wang WS, Zhang F, Zhang T, Zhao W, Fu BY, Li ZK (2013) Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice 6(1):1–13

    Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31(2):186–192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro, P.R. et al. (2018). Castor Bean Metabolomics: Current Knowledge and Perspectives Toward Understanding of Plant Plasticity Under Stress Condition. In: Kole, C., Rabinowicz, P. (eds) The Castor Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97280-0_13

Download citation

Publish with us

Policies and ethics