Skip to main content

Carbon Dynamics at Harvard Forest: Ecological Responses to Changes in the Growing Season

  • Chapter
  • First Online:
Climate Change, Food Security and Natural Resource Management
  • 1242 Accesses

Abstract

Our understanding of forest carbon dynamics is a crucial component of global carbon management given the potential impacts from future climatic changes. Observed increases in carbon storage in New England forests are not fully understood, and explanations range from increased atmospheric nitrogen deposition to longer growing seasons. These explanations highlight the importance of investigating the phenological and ecosystem function responses to increases in the growing season. Responses were modeled and studied at Harvard Forest, a temperate deciduous forest located in Petersham, MA. Ongoing biometric and eddy flux measurements at the forest provided 17 years of data for this study. Measurements included biometry components, such as leaf area index (LAI) and aboveground woody biomass, and the eddy flux parameters, including carbon flux and measurements of PAR and vapor pressure deficit (VPD). Structural equation modeling (SEM) was used to analyze these data and investigate their whole ecosystem direct and indirect interactions. SEM allowed for analyses that addressed the complexity of forest ecosystems and their components. Growing season length was a significant driver of carbon uptake, and was heavily influenced by soil temperatures below the surface. Analyses of the eddy flux data resulted in a model that accurately portrayed the interactions between the eddy flux components and the growing season (GFI = 0.90). Further, the best-fit integrated model simulated an ecological 1-year time lag between the eddy flux and biometry data (GFI = 0.78). This study presents a basis for SEM analyses with the biometry and eddy flux measurements at Harvard Forest. Further research is needed to investigate the ecosystem function responses to changes in the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., & Moore, K. (2001). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1692.

    Article  CAS  Google Scholar 

  • Barnes, B. V., Zak, D. R., Denton, S. R., & Spurr, S. H. (1998). Forest ecology. New York: Wiley.

    Google Scholar 

  • Bedison, J. E., & McNeil, B. E. (2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology, 90, 1736–1742.

    Article  Google Scholar 

  • Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity- evidence since the middle of the 20th century. Global Change Biology, 12, 862–882.

    Article  Google Scholar 

  • Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. Environmental Pollution, 116, 363–372.

    Article  CAS  Google Scholar 

  • Casperson, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., & Birdsey, R. A. (2000). Contributions of land-use history to carbon accumulation in U.S. forests. Science, 290, 1148–1152.

    Article  Google Scholar 

  • Cha, D. H., Appel, H. M., Frost, C. J., Schultz, J. C., & Steiner, K. C. (2010). Red oak responses to nitrogen addition depend on herbivory type, tree family, and site. Forest Ecology and Management, 259, 1930–1937.

    Article  Google Scholar 

  • Curtis, P. S., Hanson, P. J., Bolstad, P., Barford, C., Randolph, J. C., Schmid, H. P., & Wilson, K. B. (2002). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology, 113, 3–19.

    Article  Google Scholar 

  • Dewar, R. C. (1990). A model of carbon storage in forests and forest products. Tree Physiology, 6, 417–428.

    Article  CAS  Google Scholar 

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–193.

    Article  CAS  Google Scholar 

  • Foster, D. R., Donahue, B. M., Kittredge, D. B., Lambert, K. F., Hunter, M. L., Hall, B. R., Irland, L. C., Lilieholm, R. J., Orwig, D. A., D’Amato, A. W., Colburn, E. A., Thompson, J. R., Levitt, J. N., Ellison, A. M., Keeton, W. S., Aber, J. D., Cogbill, C. V., Driscoll, C. T., Fahey, T. J., & Hart, C. M. (2010). Wildlands and Woodlands: A vision for the New England landscape. Cambridge, MA: Harvard Forest, Harvard University Press.

    Google Scholar 

  • Fox, J. (2006). Structural equation modeling with the SEM package in R. Structural Equation Modeling, 13, 465–486.

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks; making REDD a reality. Environmental Research Letters, 2, 1–13.

    Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., & Wofsy, S. C. (1996a). Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science, 271, 1576–1578 In text: Goulden, 1996a.

    Article  CAS  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., & Wofsy, S. C. (1996b). Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biology, 2, 169–182 In text: Goulden, 1996b.

    Article  Google Scholar 

  • Grace, J. B. (2006). Structural equation modeling and natural systems. New York: Cambridge University Press.

    Book  Google Scholar 

  • Guest, R. (2010). The economics of sustainability in the context of climate change: An overview. Journal of World Business, 45, 326–335.

    Article  Google Scholar 

  • Harmon, M. E., & Sexton, J. (1996). Guidelines for measurements of woody detritus in forest ecosystems. U.S. LTER Network Office, 20, 1–73.

    Google Scholar 

  • Harmon, M. E., Ferrell, W. K., & Franklin, J. F. (1990). Effects on carbon storage of conversion of old-growth forests to young forests. Science, 247, 699–702.

    Article  CAS  Google Scholar 

  • Heath, L. S., Smith, J. E., Woodall, C. W., Azuma, D. L., & Waddell, K. L. (2011). Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership. Ecosphere, 2, 1–21.

    Article  Google Scholar 

  • Hopkins, R. (2009). Peak oil and climate change. In: The transition handbook: From oil dependency to local resilience. White River Junction: Chelsea Green Publishing.

    Google Scholar 

  • Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., & McManus, J. B. (2006). Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern U.S. forest site. Agricultural and Forest Meteorology, 136, 159–174.

    Article  Google Scholar 

  • Houghton, R. A. (1995). Land-use change and the carbon cycle. Global Change Biology, 1, 275–287.

    Article  Google Scholar 

  • Irland, L. C. (2008). Ice storm 1998 and the forests of the Northeast. Pathology, 1, 32–39.

    Google Scholar 

  • Kulmatiski, A., Vogt, D. J., Siccama, T. G., Tilley, J. P., Kolesinskas, K., Wickwire, T. W., & Larson, B. C. (2004). Landscape determinants of soil carbon and nitrogen storage in Southern New England. Soil Science Society of America Journal, 68, 2014–2023.

    Article  CAS  Google Scholar 

  • Liu, W. H., Bryant, D. M., Hutyra, L. R., Saleska, S. R., Hammond-Pyle, E., Curran, D., & Wofsy, S. C. (2006). Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. Ecosystem Ecology, 148, 108–117.

    Google Scholar 

  • Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., Melillo, J. M., & Steudler, P. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7–28.

    Article  Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.

    Article  CAS  Google Scholar 

  • Ollinger, S. V., Aber, J. D., & Federer, C. A. (1998). Estimating regional forest productivity and water yield using an ecosystem model linked to a GIS. Landscape Ecology, 13, 323–334.

    Article  Google Scholar 

  • Olthof, I., King, D. J., & Lautenschlager, R. A. (2003). Overstory and understory leaf area index as indicators of forest response to ice storm damage. Ecological Indicators, 3, 49–64.

    Article  Google Scholar 

  • Orwig, D. A., Foster, D. R., & Mausel, D. L. (2002). Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. Journal of Biogeography, 29, 1475–1487.

    Article  Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. The Annual Review of Ecology, Evolution, and Systematics, 37, 637–639.

    Article  Google Scholar 

  • Perry, D. A. (1994). Forest ecosystems. Baltimore: John Hopkins University press.

    Google Scholar 

  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052–2077.

    Article  Google Scholar 

  • Richardson, A. D. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society, 365, 3227–3246.

    Article  Google Scholar 

  • Saxe, H., Ellsworth, D. S., & Heath, J. (1998). Tansley Review No. 98: Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395–426.

    Article  Google Scholar 

  • Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.

    Article  Google Scholar 

  • Schimel, D., Melillo, J., Tian, H., McGuire, A. D., Kicklighter, D., Kittel, T., Ojima, D., Parton, W., Kelly, R., Skyes, M., Neilson, R., & Rizzo, B. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004.

    Article  CAS  Google Scholar 

  • Seymour, R., & Hunter, M. (1999). Principles of ecological forestry. In: Managing biodiversity in forested ecosystems. New York: Cambridge University Press.

    Google Scholar 

  • Toledo, M., Poorter, L., Pena-Claros, M., Alarcon, A., Balcazar, J., Leano, C., Licona, J. C., Llanque, O., Vroomans, V., Zuidema, P., & Bongers, F. (2010). Climate is a stronger driver of tree and forest growth rates than soil. Journal of Ecology, 10, 1–11.

    Google Scholar 

  • Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., & Munger, J. W. (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research, 112, 1–25.

    Article  Google Scholar 

  • Vincent, M. A., & Saatchi, S. S. (1999). Comparison of remote sensing techniques for measuring carbon sequestration. Jet Propulsion Laboratory, California Institute of Technology, 1, 36.

    Google Scholar 

  • White, M. A., Running, S. W., & Thornton, P. E. (1999). The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42, 139–145.

    Article  CAS  Google Scholar 

  • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., & Bazzaz, F. A. (1993). Net exchange of CO2 in a mid-latitude forest. Science, 260, 1314–1318.

    Article  CAS  Google Scholar 

  • Zheng, D., Heath, L. S., & Ducey, M. J. (2008). Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA. Journal of Applied Remote Sensing, 2, 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Kathleen Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez, L.K. (2019). Carbon Dynamics at Harvard Forest: Ecological Responses to Changes in the Growing Season. In: Behnassi, M., Pollmann, O., Gupta, H. (eds) Climate Change, Food Security and Natural Resource Management . Springer, Cham. https://doi.org/10.1007/978-3-319-97091-2_16

Download citation

Publish with us

Policies and ethics