Skip to main content

Logical Comparison Measures in Classification of Data—Nonmetric Measures

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting (ITISE 2017)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 1926 Accesses

Abstract

In this chapter, we will create and use generalized combined comparison measures from t-norms (T) and t-conorms (S) for comparison of data. Norms are combined by the use of generalized mean, where t-norms give minimum and t-conorms give maximum compensation. From this intuitively thinking follows that when these norms are aggregated together, these new comparison measures should be able to find the best possible classification result in between minimum and maximum. We will use classification as our test bench for the suitability of these new comparison measures created. In these classification tasks, we have tested five different types of combined comparison measures (CCM), with t-norms and t-conorms. That were Dombi family, Frank family, Schweizer-Sklar family, Yager family, and Yu family. In classification, we used the following datasets: ionosphere, iris, and wine. We will compare the results achieved with CCM to the ones achieved with pseudo equivalences and show that these new measures tend to give better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tversky, A., Krantz, D.H.: The dimensional representation and the metric structure of similarity data. J. Math. Psychol. 7(3), 572–596 (1970)

    Article  MathSciNet  Google Scholar 

  2. Santini, S., Jain, R.: Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 871–883 (1999)

    Article  Google Scholar 

  3. France, R.K.: Weights and Measures: An Axiomatic Model for Similarity Computations. Internal Report, Virginia Tech (1994)

    Google Scholar 

  4. De Cock, M., Kerre, E.: Why fuzzy T-equivalence relations do not resolve the Poincar paradox, and related issues. Fuzzy Sets Syst. 133(2), 181–192 (2003)

    Article  Google Scholar 

  5. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  6. Zadeh, L.A., Fuzzy sets and their application to pattern classification and clustering analysis. In: Van Ryzin, J. (Ed.) Classification and Clustering. Academic Press, pp. 251–299 (1977)

    Google Scholar 

  7. Pal, S.K., Dutta-Majumder, D.K.: Fuzzy Mathematical Approach to Pattern Recognition. Wiley (Halsted), N. Y. (1986)

    Google Scholar 

  8. Saastamoinen, K.: Classification of data with similarity classifier. In: International Work-Conference on Time Series, Keynote Speech, ITISE2016 Proceedings

    Google Scholar 

  9. Lowen, R.R.: Fuzzy Set Theory: Basic Concepts, Techniques, and Bibliography. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  10. Bellman, R., Giertz, M.: On the analytic formalism of the theory of fuzzy sets. Inf. Sci. 5, 149–165 (1973)

    Article  MathSciNet  Google Scholar 

  11. Kang, T., Chen, G.: Modifications of Bellman-Giertz’s theorem. Fuzzy Sets Syst. 94(3), 349–353 (1998)

    Article  MathSciNet  Google Scholar 

  12. Saastamoinen, K., Ketola, J.: Using generalized combination measure from Dombi and Yager type of T-norms and T-conorms in classification. In: Proceedings of the ECTI-CON 2005 Conference (2005)

    Google Scholar 

  13. Dyckhoff, H., Pedrycz, W.: Generalized means as model of compensative connectives. Fuzzy Sets Syst. 14, 143–154 (1984)

    Article  MathSciNet  Google Scholar 

  14. Zimmermann, H.-J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets Syst. 4, 37–51 (1980)

    Article  Google Scholar 

  15. Bilgiç, T., Türkşen, I.B.: Measurement-theoretic justification of connectives in fuzzy set theory. Fuzzy Sets Syst. 76(3), 289–308 (1995)

    Article  MathSciNet  Google Scholar 

  16. Dombi, J.: Basic concepts for a theory of evaluation: the aggregative operator. Eur. J. Oper. Res. 10, 282–293 (1982)

    Article  MathSciNet  Google Scholar 

  17. Frank, M.J.: On the simultaneous associativity of \(F(x, y)\) and \(x+y-F(x, y)\). Aeqationes Math. 19, 194–226 (1979)

    Article  MathSciNet  Google Scholar 

  18. Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debr. 10, 69–81 (1963)

    MathSciNet  MATH  Google Scholar 

  19. Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980)

    Article  MathSciNet  Google Scholar 

  20. Yu, Y.: Triangular norms and TNF-sigma algebras. Fuzzy Sets Syst. 16, 251–264 (1985)

    Article  MathSciNet  Google Scholar 

  21. Sklar, A.: Fonctions de r\(\acute{e}\)partition \(\acute{a}\) n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)

    MathSciNet  Google Scholar 

  22. Fisher, N.I.: Copulas. In: Kotz, S., Read, C.B., Banks, D.L. (eds.) Encyclopedia of Statistical Sciences, vol. 1, pp. 159–163. Wiley, New York (1997)

    Google Scholar 

  23. Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer, New York (2001)

    Book  Google Scholar 

  24. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Technical Report 9001, University of Illinois at Urbana-Champain (1990)

    Google Scholar 

  25. Mantel, B., Periaux, J., Sefrioui, M.: Gradient and genetic optimizers for aerodynamic desing. In: ICIAM 95 Conference, Hamburgh (1995)

    Google Scholar 

  26. Michalewics, Z.: Genetic Algorithms + Data Structures = Evolution Programs Artificial Intelligence. Springer, New York (1992)

    Book  Google Scholar 

  27. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

    Article  Google Scholar 

  28. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution—A Practical Approach to Global Optimization. Springer, Natural Computing Series (2005)

    MATH  Google Scholar 

  29. UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/. Accessed 15 Jan 2017

  30. Saastamoinen, K.: Many valued algebraic structures as measures of comparison, Acta Universitatis Lappeenrantaensis. Ph.D. Thesis (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Saastamoinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saastamoinen, K. (2018). Logical Comparison Measures in Classification of Data—Nonmetric Measures. In: Rojas, I., Pomares, H., Valenzuela, O. (eds) Time Series Analysis and Forecasting. ITISE 2017. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-96944-2_12

Download citation

Publish with us

Policies and ethics