Skip to main content

Antibiotics in Emergency General Surgery

  • Chapter
  • First Online:
Emergency General Surgery

Abstract

Emergency general surgery patients are at risk for a variety of primary or secondary infectious complications. Clinicians must have a balanced approach to antibiotic therapy to ensure successful eradication of infections while minimizing the risk for propagating antibiotic resistance. The purpose of this chapter is to review principles and recent advances for the diagnosis and treatment of bacterial infections, including diagnosis, antibiotic principles, specific antibiotic agents, approach to antibiotic therapy, drug toxicity, and multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADR:

Adverse drug reaction

AMG:

Aminoglycoside

AUC:

Area under the curve

CDI:

Clostridium difficile infection

Cmax:

Peak drug concentration

CMS:

Centers for Medicare and Medicaid Services

CNS:

Central nervous system

CrCl:

Creatinine clearance

CRE:

Carbapenem-resistant Enterobacteriaceae

ESBL:

Extended-spectrum beta-lactamase

FDA:

Food and Drug Administration

FLQ:

Fluoroquinolones

GI:

Gastrointestinal

GNR:

Gram-negative rod

ICU:

Intensive care unit

IV:

Intravenous

KPC:

Klebsiella pneumoniae carbapenemase

MAOI:

Monoamine oxidase inhibitor

MDRO:

Multidrug-resistant organism

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-susceptible Staphylococcus aureus

PAE:

Post-antibiotic effect

PBP:

Penicillin-binding protein

PCN:

Penicillin

PCR:

Polymerase chain reaction

PD:

Pharmacodynamics

PK:

Pharmacokinetics

SMX:

Sulfamethoxazole

SrCr:

Serum creatinine

T > MIC:

Time above minimum inhibitory concentration

TMP:

Trimethoprim

UA:

Urinalysis

UTI:

Urinary tract infection

Vd:

Volume of distribution

VISA:

Vancomycin-intermediate Staphylococcus aureus

VRE:

Vancomycin-resistant Enterococcus

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    Article  CAS  Google Scholar 

  2. Ho VP, Barie PS. Antibiotics for critically ill patients. In: Current surgical therapy., 11th edition. Philadelphia: Elsevier Saunders; 2014. p. 1271–8.

    Google Scholar 

  3. Narayan M, Medinilla SP. Fever in the postoperative patient. Emerg Med Clin N Am. 2013;31:1045–58.

    Article  Google Scholar 

  4. Marik PE. Fever in the ICU. Chest. 2000;117:855–69.

    Article  CAS  Google Scholar 

  5. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2016;45:486–552.

    Article  Google Scholar 

  6. Joundi RA, Wong BM, Leis JA. Antibiotics “just in case” in a patent with aspiration pneumonitis. JAMA Intern Med. 2015;175:489–90.

    Article  Google Scholar 

  7. Semeniuk H, Church D. Evaluation of the leukocyte esterase and nitrite dipstick screening tests for detection of bacteriuria in women with suspected uncomplicated urinary tract infections. J Clin Microbiol. 1999;37:3051–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stovall RT, Haenal JB, Jenkins TC, et al. A negative urinalysis rules out catheter-associated urinary tract infection in trauma patients in the intensive care unit. J Am Coll Surg. 2013;217:162–6.

    Article  Google Scholar 

  9. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis. 2016;62:1197–202.

    Article  Google Scholar 

  10. Bauer KA, Perez KK, Forrest GN, et al. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis. 2015;59(S3):S134–45.

    Google Scholar 

  11. Rhee C. Using procalcitonin to guide antibiotic therapy. Open Forum Infect Dis. 2016;4:ofw249.

    Article  Google Scholar 

  12. Blumenthal DK, Garrison JC. Pharmacodynamics: molecular mechanisms of drug action. In: Brunton LL, Chabner BA, Knollman BC, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 97–146.

    Google Scholar 

  13. Ho VP, Barie PS. Antibiotics for critically ill patients. In: Current surgical therapy., 11th edition. Philadelphia, PA: Elsevier Saunders; 2014. p. 1271–8.

    Google Scholar 

  14. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37:840–51.

    Article  CAS  Google Scholar 

  15. Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamics considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21:412–20.

    Article  Google Scholar 

  16. Hobbs ALV, Shea KM, Roberts KM, et al. Implications of augmented renal clearance on drug dosing in critically ill patients: a focus on antibiotics. Pharmacotherapy. 2015;35:1063–75.

    Article  CAS  Google Scholar 

  17. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of β-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am. 2003;17:479–501.

    Article  Google Scholar 

  18. Kuper KM, Boles DM, Mohr J, et al. Antimicrobial susceptibility testing: a primer for clinicians. Pharmacotherapy. 2009;29:1326–43.

    Article  Google Scholar 

  19. Cosgrove SE, Avdic E, Dzintars K, et al (2015). Johns Hopkins Antibiotic Guideline 2015–2016. Available at: https://www.hopkinsmedicine.org/amp/guidelines/antibiotic_guidelines.pdf. Accessed 10 Oct 2017.

  20. Doi Y, Chambers HF. Penicillin and beta-lactamase inhibitors. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 263–77.

    Google Scholar 

  21. Craig WA, Andes DR. Cephalosporins. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 278–92.

    Google Scholar 

  22. Doi Y, Chambers HF. Other β-lactams. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 293–7.

    Google Scholar 

  23. Murray BE, Arias CA, Nannini EC. Glycopeptides (vancomycin and teicoplanin), streptogramins (Quinupristin-dalfopristin), lipopeptides (daptomycin), and lipoglycopeptides (telavancin). In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 377–400.

    Google Scholar 

  24. Cox HL, Donowitz GR. Linezolid and other oxazolidinones. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 406–9.

    Google Scholar 

  25. Sivapalasingam S, Steigbigel NH. Macrolides, clindamycin, and ketolides. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 358–75.

    Google Scholar 

  26. Hooper DC, Strahilevitz J. Quinolones. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 419–39.

    Google Scholar 

  27. Noonburg GE. Management of extremity trauma and related infections occurring in the aquatic environment. J Am Acad Orthop Surg. 2005;13:243–53.

    Article  Google Scholar 

  28. U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; wars about disabling side effects that can occur together. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm500143.htm. Accessed 10 Jan 2017.

  29. Leggett JE. Aminoglycosides. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 310–21.

    Google Scholar 

  30. Zinner SH, Mayer KH. Sulfonamides and trimethoprim. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 410–8.

    Google Scholar 

  31. Moffa M, Brook I. Tetracyclines, glycylcyclines, and chloramphenicol. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 322–38.

    Google Scholar 

  32. Kaye KS, Pogue JM, Kaye D. Polymyxins (Polymyxin B and Colistin). In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 401–5.

    Google Scholar 

  33. Maslow MJ, Portal-Celhay C. Rifamycins. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 339–49.

    Google Scholar 

  34. U.S. Food and Drug Administration. FDA drug safety communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning. Available at: https://www.fda.gov/Drugs/DrugSafety/ucm369580.htm. Accessed 10 Oct 2017.

  35. Nagel JL, Aronoff DM. Metronidazole. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 350–7.

    Google Scholar 

  36. Horton JM. Urinary tract agents: Nitrofurantoin, fosfomycin, and methenamine. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 339–49.

    Google Scholar 

  37. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376:2235–44.

    Article  Google Scholar 

  38. Septimus EJ, Coopersmith CM, Whittle J, et al. Sepsis national hospital quality measure (SEP-1): multistakeholder work group recommendations for appropriate antibiotics for the treatment of sepsis. Clin Infect Dis. 2017;65:1565–9.

    Article  Google Scholar 

  39. Tunkel AR, Hasbun R, Bhimraj A, et al. IDSA practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64:34–65.

    Article  Google Scholar 

  40. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America guidelines on community-acquired pneumonia in adults. Clin Infect Dis. 2007;44:27–72.

    Article  Google Scholar 

  41. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63:1–51.

    Article  Google Scholar 

  42. Mazuski JE, Tessier JM, May AK, et al. The Surgical Infection Society revised guidelines on the management of intra-abdominal infection. Surg Infect. 2017;18:1–75.

    Article  Google Scholar 

  43. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection. Clin Infect Dis. 2009;49:1–45.

    Article  CAS  Google Scholar 

  44. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections. Clin Infect Dis. 2014;59:10–52.

    Article  Google Scholar 

  45. Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults. Clin Infect Dis. 2010;50:625–63.

    Article  Google Scholar 

  46. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the IDSA and SHEA. Clin Infect Dis. 2016;62:51–77.

    Article  Google Scholar 

  47. Kuruvilla ME, Khan DA. Antibiotic allergy. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 298–303.

    Google Scholar 

  48. Salkind AR, Cuddy PG, Foxworth JW. The rational clinical examination; is this patient allergic to penicillin? JAMA. 2001;285:2498–505.

    Article  CAS  Google Scholar 

  49. Sullivan T, Wedner HJ, Shatz GS, et al. Skin testing to detect penicillin allergy. J Allergy Clin Immunol. 1981;68:171–80.

    Article  CAS  Google Scholar 

  50. Frumin J, Gallagher JC. Allergic cross-sensitivity between penicillin, carbapenem and monobactam antibiotics: what are the chances? Ann Pharmacother. 2009;43:304–15.

    Article  CAS  Google Scholar 

  51. Solensky R, Khan DA. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010;105:e1–78.

    Google Scholar 

  52. Kula B, Djordjevic G, Robinson JL. A systematic review: can one prescribe carbapenems to patients with IgE-mediated allergy to penicillins or cephalosporins? Clin Infect Dis. 2014;59:1113–22.

    Article  CAS  Google Scholar 

  53. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57:734–44.

    Article  Google Scholar 

  54. Lodise TP, Lomaestro B, Graves J, et al. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6.

    Article  CAS  Google Scholar 

  55. Giuliano CA, Patel CR, Kale-Pradhan PB. Is the combination of piperacillin-tazobactam and vancomycin associated with development of acute kidney injury? A meta-analysis. Pharmacotherapy. 2016;36:1217–28.

    Article  CAS  Google Scholar 

  56. Luther MK, Timbrook TT, Caffrey AR, et al. Vancomycin plus piperacillin-tazobactam and acute kidney injury in adults: a systematic review and meta-analysis. Crit Care Med. 2017.; Epub ahead of print

    Google Scholar 

  57. Hammond DA, Smith MN, Li C, et al. Systematic review and metaanalysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infec Dis. 2017;64:666–74.

    Google Scholar 

  58. Oki FY. Principles of critical care. 3rd ed. New York: The McGraw-Hill Companies; 2005. p. 641–97.

    Google Scholar 

  59. Brown KA, Khanafer N, Daneman N, et al. Meta-analysis of antibiotics and the risk of community-acquired Clostridium difficile infection. Antimicrob Agents Chemother. 2013;57:2326–32.

    Article  CAS  Google Scholar 

  60. Deshpande A, Pasupeuleti V, Thota P, et al. Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68:1951–61.

    Article  CAS  Google Scholar 

  61. Loo VG, Am B, Poirier L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med. 2011;365:1693–703.

    Article  CAS  Google Scholar 

  62. U.S. Department of Health and Human Services Centers for disease control and prevention. (2013) Antibiotic resistance threats in the United States, 2013. Available at: https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. Accessed 26 October 2017.

    Google Scholar 

  63. van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systemic review and meta-analysis. Clin Infect Dis. 2012;54:755–71.

    Article  Google Scholar 

  64. Heintz BH, Halilovic J, Christensen CL. Vancomycin-resistant Enterococcal urinary tract infections. Pharmacotherapy. 2010;30:1136–49.

    Article  CAS  Google Scholar 

  65. Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med. 2005;352:380–91.

    Article  CAS  Google Scholar 

  66. Gutiérrez-Gutiérrez B, Pérez-Galera S, Salamanca E, et al. A multinational, preregistered cohort study of beta-lactam/beta-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;20:4159–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell J. Daley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daley, M.J., Hodge, E.K., Rose, D.T. (2019). Antibiotics in Emergency General Surgery. In: Brown, C., Inaba, K., Martin, M., Salim, A. (eds) Emergency General Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-96286-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96286-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96285-6

  • Online ISBN: 978-3-319-96286-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics