Skip to main content

Passenger-Induced Delay Propagation: Agent-Based Simulation of Passengers in Rail Networks

  • Conference paper
  • First Online:
Simulation Science (SimScience 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 889))

Included in the following conference series:

Abstract

Current work on delay management in railway networks has – to the best of our knowledge – largely ignored the impact of passengers’ behavior on train delays. This paper describes ongoing work aiming to explore this topic. We propose a hybrid agent-based architecture combining a macroscopic railway network simulation with a microscopic simulation of passengers in stations based on the LightJason agent platform. Using an initial instantiation of the architecture, we model a simple platform changing scenario and explore how departure delays of trains are influenced by delays of incoming trains, and by numbers and heterogeneity of passengers. Our results support the hypothesis that passengers’ behavior in fact has a significant effect on delays of departing trains, i.e., that passengers’ behavior in stations must not be neglected. We recommend to include these effects in up-to-date models of delay management.

Partially supported by Simulation Science Center Clausthal/Göttingen (SWZ), project ASIMOV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For reasons of simplicity, throughout this paper we will uniformly use the term passenger to refer to passengers on a train, but also to travelers at a railway station (including pedestrian through-traffic).

  2. 2.

    see scenario in [2] or https://lightjason.github.io/news/2017-02-video/.

  3. 3.

    Evaluation was performed in January 2017 using the tools FindBugs and J-Depend.

  4. 4.

    ASL+ stands for AgentSpeak(L++).

  5. 5.

    http://lightjason.github.io/AgentSpeak/project-reports.html.

  6. 6.

    https://lightjason.github.io/benchmark/.

  7. 7.

    http://lightjason.org.

References

  1. Ahlbrecht, T., Dix, J., Fiekas, N., Köster, M., Kraus, P., Müller, J.P.: An architecture for scalable simulation of systems of cognitive agents. Int. J. Agent Oriented Softw. Eng. (IJAOSE) 5, 232–265 (2016)

    Article  Google Scholar 

  2. Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired by Jason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59294-7_6

    Chapter  Google Scholar 

  3. Bazzan, A.L.C., Klügl, F.: Agent-based modeling and simulation. AI Mag. 33(3), 29–40 (2013)

    Google Scholar 

  4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using Jason, vol. 8. Wiley, Chichester (2007)

    Google Scholar 

  5. Camus, B., Galtier, V., Caujolle, M., Chevrier, V., Vaubourg, J., Ciarletta, L., Bourjot, C.: Hybrid co-simulation of FMUs using DEV&DESS in MECSYCO. In: Proceedings of the Symposium on Theory of Modeling & Simulation, pp. 8:1–8:8. Society for Computer Simulation International, San Diego (2016)

    Google Scholar 

  6. Codd, E.F.: Cellular Automata. Academic Press Inc., Orlando (1968)

    MATH  Google Scholar 

  7. Conte, C., Schöbel, A.: Identifying dependencies among delays. In: Proceedings of IAROR 2007 (2007). ISBN 978-90-78271-02-4

    Google Scholar 

  8. Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A.: Delay management with rerouting of passengers. Transp. Sci. 46(1), 74–89 (2012)

    Article  Google Scholar 

  9. Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A.: Delay propagation and delay management in transportation network. In: Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., Schlechte, T. (eds.) Handbook of Optimization in the Railway Industry. International Series in Operations Research & Management Science, vol. 268, pp. 285–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72153-8_13

  10. Dollevoet, T., Schmidt, M., Schöbel, A.: Delay management with re-routing of passengers. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009. Dagstuhl Seminar Proceedings (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2143

  11. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of the Sixth National Conference on Artificial Intelligence, AAAI 1987, vol. 2, pp. 677–682. AAAI Press (1987)

    Google Scholar 

  12. Grether, D., Nagel, K.: Extensible software design of a multi-agent transport simulation. Procedia Comput. Sci. 19, 380–388 (2013). http://www.sciencedirect.com/science/article/pii/S1877050913006601

  13. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  14. Johora, F.T., Kraus, P., Müller, J.P.: Dynamic path planning and movement control in pedestrian simulation. In: van Dam, K.H., Thompson, J. (eds.) Preproceedings of 2nd International Workshop on Agent-Based Modelling Of Urban Systems (ABMUS 2017), Sao Paulo, Brazil, May 2017, accepted for publication. arXiv:1709.08235

  15. Kirchoff, F.: Modelling delay propagation in railway networks. Oper. Res. Proc. 2013, 237–242 (2014)

    Google Scholar 

  16. Kirchoff, F.: Verspätungsfortpflanzung in Bahnnetzen, Modellierung und Berechnung mit Verteilungsfamilien. Ph.D. thesis, University of Technology Claustal, Germany (2015)

    Google Scholar 

  17. Li, W., Zhu, W.: A dynamic simulation model of passenger flow distribution on schedule-based rail transit networks with train delays. J. Traffic Transp. Eng. 3(4), 364–373 (2016). http://www.sciencedirect.com/science/article/pii/S2095756415305833

  18. Liang, Y.D., Barsky, B.A.: A new concept and method for line clipping. ACM Trans. Graph. (TOG) 3(1), 1–22 (1984)

    Article  Google Scholar 

  19. Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schöbel, A.: Source estimation for propagation processes on complex networks with an application to delays in public transportation systems. J. R. Stat. Soc. Ser. C 66, 521–536 (2017)

    Article  MathSciNet  Google Scholar 

  20. Pachl, J.: Railway Operations and Control, 2nd edn. VTD Rail Publishing, Mountlake Terrace (2014)

    Google Scholar 

  21. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands, 22–25 January 1996, Proceedings, pp. 42–55 (1996). https://doi.org/10.1007/BFb0031845

  22. Rückert, R., Lemnian, M., Blendinger, C., Rechner, S., Müller-Hannemann, M.: Panda: a software tool for improved train dispatching with focus on passenger flows. Public Transp. 9(1–2), 307–324 (2017)

    Article  Google Scholar 

  23. Schmidt, M., Schöbel, A.: The complexity of integrating routing decisions in public transportation models. Networks 65(3), 228–243 (2015)

    Article  MathSciNet  Google Scholar 

  24. Schöbel, A.: Capacity constraints in delay management. Public Transp. 1(2), 135–154 (2009)

    Article  MathSciNet  Google Scholar 

  25. Shalaby, A.S., King, D., Srikukenthiran, S.S.: Using simulation to analyze crowd congestion and mitigation measures at Canadian subway interchanges: case of Bloor-Yonge station, Toronto, Ontario. Transp. Res. Rec. J. Transp. Res. Board 2417, 27–36 (2014)

    Google Scholar 

  26. Srikukenthiran, S.S., Shalaby, A.S.: Enabling large-scale transit microsimulation for disruption response support using the Nexus platform: proof-of-concept case study of the Greater Toronto area transit network. Public Transp. 9(1–2), 411–435 (2017)

    Article  Google Scholar 

  27. Wales, J., Marinov, M.: Analysis of delays and delay mitigation on a metropolitan rail network using event based simulation. Simul. Model. Pract. Theory 52, 52–77 (2015). http://www.sciencedirect.com/science/article/pii/S1569190X1500012X

  28. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2009)

    Google Scholar 

  29. Zhang, Q., Han, B., Li, D.: Modeling and simulation of passenger alighting and boarding movement in Beijing metro stations. Transp. Res. Part C Emerg. Technol. 16(5), 635–649 (2008). http://www.sciencedirect.com/science/article/pii/S0968090X07000927

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Schöbel .

Editor information

Editors and Affiliations

Appendix: Traveller Movement Behaviour, Expressed in AgentSpeak(L++) Code

Appendix: Traveller Movement Behaviour, Expressed in AgentSpeak(L++) Code

figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albert, S., Kraus, P., Müller, J.P., Schöbel, A. (2018). Passenger-Induced Delay Propagation: Agent-Based Simulation of Passengers in Rail Networks. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds) Simulation Science. SimScience 2017. Communications in Computer and Information Science, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-96271-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96271-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96270-2

  • Online ISBN: 978-3-319-96271-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics