Skip to main content

Specific Learning Disorders, Motor Disorders, and Communication Disorders

  • Chapter
  • First Online:
Textbook of Psychiatry for Intellectual Disability and Autism Spectrum Disorder

Abstract

This chapter includes developmental learning, communication, and motor disorders, which affect persons with intellectual disability (ID), autism spectrum disorders (ASD), and/or other neurodevelopmental disorders more often than neurotypical persons, and have a significant influence on the emotional and adaptive development as well as on overall functioning and personality throughout the whole lifespan of the person.

Specific learning disorders (SLDs) occur early during the first years of formal schooling, with difficulty in learning, reading, writing, and arithmetic. They occur in the absence of a global impairment of intelligence and intellectual capability, although these disorders are prevalent among children and adults with cognitive impairments within the range of ID. These disorders originate in childhood and often continue into adulthood among many. Various treatments are available showing a varied rate of success for SLDs.

Motor disorders such as motor coordination difficulties, tic, and Tourette’s syndrome are common in children and adults with ID. Children and adults with ID also manifest various types of communication disorders including speech sound disorder, speech fluency disorder (stuttering), and social (pragmatic) communication disorder. Social communication disorder is common among children and adults with ASD.

There are significant gaps in current knowledge of phenomenology, categorization, aetiology, and natural history of communication, and motor disorders in persons with ID and/or ASD. It is also difficult to decipher the many causal links between these conditions and the frequently associated psychiatric disorders.

Although the outcomes of many therapeutic programmes are still ambiguous and underdocumented, treatment of communication and motor disorders, as well as prevention of associated psychiatric problems, seems to be more effective when based on a coordinated multidisciplinary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. International classification of diseases for mortality and morbidity statistics (11th Revision) 2018. Retrieved from https://icd.who.int/browse11/l-m/en (l.a. June 4 2021).

  2. APA, American Psychiatric Association. Diagnostic and statistical manual of mental disorders fifth edition (DSM-5). Arlington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  3. Consensus Conference on SLD of the Italian Health Institute (Istituto Superiore di Sanità), Sistema Nazionale per le Linee Guida (2011). Disturbi Specifici di Apprendimento, Consensus conference, 6–7 dicembre 2010, http://www.lineeguidadsa.it

  4. APA, American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fourth edition, text revision (DSM-IV-TR). Arlington: American Psychiatric Association; 2000.

    Book  Google Scholar 

  5. World Health Organization. International classification of diseases and related health problems (10th rev., ICD-10). Geneva: WHO; 1994.

    Google Scholar 

  6. Gross-Tsur V, Manor O, Shalev R. Developmental dyscalculia: prevalence and demographic features. Dev Med Child Neurol. 1996;38:25–33. https://doi.org/10.1111/j.1469-8749.1996.tb15029.x.

    Article  CAS  PubMed  Google Scholar 

  7. Geary DC, Hamson CO, Hoard MK. Numerical and arithmetical cognition: a longitudinal study of process and concept deficits in children with learning disability. J Exp Child Psychol. 2000;77(3):236–63. https://doi.org/10.1006/jecp.2000.2561.

    Article  CAS  PubMed  Google Scholar 

  8. Rutter M, Caspi A, Fergusson D, Horwood L, Goodman R, Maughan B, Moffitt TE, Meltzer H, Carroll J. Sex differences in developmental reading disability: new findings from 4 epidemiological studies. JAMA. 2004;291(16):2007–12.

    Article  CAS  PubMed  Google Scholar 

  9. Willcutt E, Penningto B. Comorbidity of reading disability and attention-deficit/hyperactivity disorder: differences by gender and subtype. J Learn Disabil. 2000;33:179–91. https://doi.org/10.1177/002221940003300206.

    Article  CAS  PubMed  Google Scholar 

  10. Oeseburg B, Jansen DE, Dijkstra GJ, Groothoff JW, Reijneveld SA. Prevalence of chronic diseases in adolescents with intellectual disability. Res Dev Disabil. 2010;31(3):698–704. https://doi.org/10.1016/j.ridd.2010.01.011.

    Article  CAS  PubMed  Google Scholar 

  11. Fortes IS, Paula CS, Oliveira MC, Bordin IA, de Jesus MJ, Rohde LA. A cross-sectional study to assess the prevalence of DSM-5 specific learning disorders in representative school samples from the second to sixth grade in Brazil. Eur Child Adolesc Psychiatry. 2016;25(2):195–207. https://doi.org/10.1007/s00787-015-0708-2.

    Article  PubMed  Google Scholar 

  12. Habib M. The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain. 2001;123:2373–99. https://doi.org/10.1093/brain/123.12.2373.

    Article  Google Scholar 

  13. Peters L, Ansari D. Are specific learning disorders truly specific, and are they disorders? Trends Neurosci Educ. 2019;17:100115. https://doi.org/10.1016/j.tine.2019.100115.

    Article  PubMed  Google Scholar 

  14. Hoeft F, Hernandez A, McMillon G, Taylor-Hill H, Martindale JL, Meyler A, et al. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J Neurosci. 2006;26:10700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, et al. Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl Acad Sci U S A. 2007;104:4234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30(10):3299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Richlan F, Kronbichler M, Wimmer H. Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage. 2011;56(3):1735–42.

    Article  PubMed  Google Scholar 

  18. Pugh KR, Mencl WE, Shaywitz BA, Shaywitz SE, Fulbright RK, Constable RT, et al. The angular gyrus in developmental dyslexia: task-specific differences in functional connectivity within posterior cortex. Psychol Sci. 2000;11:51–6.

    Article  CAS  PubMed  Google Scholar 

  19. Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002;52:101–10.

    Article  PubMed  Google Scholar 

  20. Shaywitz BA, Skudlarski P, Holahan J, Marchione KE, Constable RT, Fulbright RK, Zelterman D, Lacadie C, Shaywitz SE. Age-related changes in reading systems of dyslexic children. Ann Neurol. 2007;61:363–70.

    Article  PubMed  Google Scholar 

  21. Bishop DVM. The interface between genetics and psychology: lessons from developmental dyslexia. Proc Biol Sci. 2015;282:1806. https://doi.org/10.1098/rspb.2014.3139.

    Article  Google Scholar 

  22. Carrion-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: An overview. Dyslexia. 2013;19(4):214–40.

    Article  PubMed  Google Scholar 

  23. Ruggerini C, Manzotti S, Daolio O, Lami G. Benessere scolastico negli studenti con DSA. I fattori dello sviluppo positivo per la costruzione dell’adultità. Erickson, Trento; 2017.

    Google Scholar 

  24. Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, Costa Lda F, Claudianos C. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19(3):294–301. https://doi.org/10.1038/mp.2013.16.

    Article  CAS  PubMed  Google Scholar 

  25. Guzzetta A, Cioni G, Biologia E. Neurobiologia dello sviluppo: ruolo di genetica e ambiente nella neuroplasticità. In: Lucangeli D, Vicari S, editors. Psicologia dello sviluppo. Mondadori Università; 2019.

    Google Scholar 

  26. Olson RK, Keenan JM, Byrne B, Samuelsson S. Why do children differ in their development of reading and related skills? Sci Stud Read. 2014;18(1):38–54.

    Article  PubMed  Google Scholar 

  27. Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun. 2014;452(2):236–43.

    Article  CAS  PubMed  Google Scholar 

  28. Vaughn S, Fuchs LS. Redefining learning disabilities as inadequate response to instruction: the promise and potential problems. Learn Disabil Res Pract. 2003;18(3):137–46. https://doi.org/10.1111/1540-5826.00070.

    Article  Google Scholar 

  29. Fuchs D, Fuchs LS. Introduction to response to intervention: what, why, and how valid is it? Read Res Q. 2006;41(1):93–9.

    Article  Google Scholar 

  30. Fuchs LS, Vaughn S. Responsiveness-to-intervention: a decade later. J Learn Disabil. 2012;45(3):195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lorusso ML, Vernice M, Dieterich M, Brizzolara D, Mariani E, De Masi S, D’Angelo F, Lacorte E, Mele A. The process and criteria for diagnosing specific learning disorders: indications from the consensus conference promoted by the Italian National Institute of Health. Ann Ist Super Sanita. 2014;50(1):77–89. https://doi.org/10.4415/ANN_14_01_12.

    Article  PubMed  Google Scholar 

  32. Simmons F, Singleton C. The reading comprehension abilities of dyslexic students in higher education. Dyslexia. 2000;6:178–92.

    Article  CAS  PubMed  Google Scholar 

  33. Swanson L. Adults with reading disabilities: converting a meta-analysis to practice. J Learn Disabil. 2012;45:17–30. https://doi.org/10.1177/0022219411426856.

    Article  PubMed  Google Scholar 

  34. Klein E, Nuerk HC, Wood G, Knops A, Willmes K. The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate: how different processes work together in multi-digit addition. Brain Cognit. 2009;69(2):369–81.

    Article  Google Scholar 

  35. Murphy MM, Mazzocco MMM, Hanich LB, Early MC. Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. J Learn Disabil. 2007;40(5):458–78. https://doi.org/10.1177/00222194070400050901.

    Article  PubMed  Google Scholar 

  36. Moser Opitz E, Ramseier E. Rechenschwach oder nicht rechenschwach. Eine kritische Auseinandersetzung mit Diagnosekonzepten, Klassifikationssystemen und Diagnoseinstrumenten unter besonderer Berücksichtigung von älteren Schülerinnen und Schülern [Mathematical Learning Disabilities: a critical examination of diagnostic concepts, classification systems and diagnostic instruments, with particular consideration of older students]. Lernen und Lernstörungen. 2012;1:99–117. (Full article in German, extended abstract in English).

    Google Scholar 

  37. Devine A, Soltész F, Nobes A, Goswami U, Szucs D. Gender differences in developmental dyscalculia depend on diagnostic criteria. Learn Instr. 2013;27:31–9. https://doi.org/10.1016/j.learninstruc.2013.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ehlert A, Schroeders U, Fritz-Stratmann A. Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie. [Criticism of the discrepancy criterion in the diagnosis of dyslexia and dyscalculia]. Lernen und Lernstörungen. 2012;1:169–84. https://doi.org/10.1024/2235-0977/a000018.

    Article  Google Scholar 

  39. Kaufmann L, Mazzocco M, Dowker A, von Aster M, Göbel SM, Grabner RH, Henik A, Jordan NC, Karmiloff-Smith AD, Kucian K, Rubinsten O, Szucs D, Shalev R, Nuerk H. Dyscalculia from a developmental and differential perspective. Front Psychol. 2013;4:1–5. https://doi.org/10.3389/fpsyg.2013.00516.

    Article  Google Scholar 

  40. LeFevre JA, Fast L, Skwarchuk SL, Smith-Chant BL, Bisanz J, Kamawar D, Penner-Wilger M. Pathways to mathematics: longitudinal predictors of performance. Child Dev. 2010;81:1753–67. https://doi.org/10.1111/j.1467-8624.2010.01508.x.

    Article  PubMed  Google Scholar 

  41. Wilson A, Dehaene S. Number sense and developmental dyscalculia. In: Coch D, Dawson G, Fischer KW, Coch D, Dawson G, Fischer KW, editors. Human behavior, learning, and the developing brain: atypical development. New York: Guilford Press; 2007. p. 212–38.

    Google Scholar 

  42. Butterworth B. Developmental dyscalculia. In: Campbell JI, editor. Handbook of mathematical cognition Hove. Psychology Press; 2005. p. 455–67.

    Google Scholar 

  43. Dehaene S. Varieties of numerical abilities. Cognition. 1992;44:1–42.

    Article  CAS  PubMed  Google Scholar 

  44. Geary DC. Mathematical disabilities. Cognitive, neuropsychological, and genetic components. Psychol Bull. 1993;114(2):345–62. https://doi.org/10.1037//0033-2909.114.2.345.

    Article  CAS  PubMed  Google Scholar 

  45. Mazzocco MMM, Devlin KT, McKenney SJ. Is it a fact? Timed arithmetic performance of children with Mathematical Learning Disabilities (MLD) varies as a function of how MLD is defined. Dev Neuropsychol. 2008;33(3):318–44. https://doi.org/10.1080/87565640801982403.

    Article  PubMed  Google Scholar 

  46. Visser L, Kalmar J, Linkersdörfer J, Görgen R, Rothe J, Hasselhorn M, Schulte-Körne G. Comorbidities between specific learning disorders and psychopathology in elementary school children in Germany. Front Psych. 2020;11:292. https://doi.org/10.3389/fpsyt.2020.00292.

    Article  Google Scholar 

  47. Peterson RL, Pennington BF. Developmental dyslexia. Lancet. 2012;379(9830):1997–2007. https://doi.org/10.1016/S0140-6736(12)60198-6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pennington BF. From single to multiple deficit models of developmental disorders. Cognition. 2006;101:385–413.

    Article  PubMed  Google Scholar 

  49. Zoccolotti P, Di Filippo G, et al. Novità nell’approccio alla psicopatologia dello sviluppo del DSM-5, Psicologia clinica dello sviluppo. 2015; XIX (2).

    Google Scholar 

  50. Chong SL, Siegel LS. Stability of computational deficits in math learning disability from second through fifth grades. Dev Neuropsychol. 2008;33(3):300–7. https://doi.org/10.1080/87565640801982387.

    Article  PubMed  Google Scholar 

  51. Geary DC. Mathematics and learning disabilities. J Learn Disabil. 2004;37(1):4–15. https://doi.org/10.1177/00222194040370010201.

    Article  PubMed  Google Scholar 

  52. Geary DC, Hoard MK, Nugent L, Byrd-Craven J. Development of number line representations in children with mathematical learning disability. Dev Neuropsychol. 2008;33(3):277–99. https://doi.org/10.1080/87565640801982361.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geary DC, Hoard MK, Byrd-Craven J, Nugent L, Numtee C. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Dev. 2007;78(4):1343–59. https://doi.org/10.1111/j.1467-8624.2007.01069.x.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Swanson HL, Jerman O. Math disabilities. A selective meta-analysis of the literature. Rev Educ Res. 2006;76(2):249–74. https://doi.org/10.3102/00346543076002249.

    Article  Google Scholar 

  55. Fletcher JM, Miciak J. Comprehensive cognitive assessments are not necessary for the identification and treatment of learning disabilities. Arch Clin Neuropsychol. 2017;32:322–7.

    Article  Google Scholar 

  56. Ghidoni E, Angelini D. La dislessia negli adolescenti e negli adulti. Gli Annali Della Pubblica Istruzione. 2011;4:119–27.

    Google Scholar 

  57. Olofsson A, Taube K, Ahl A. Academic achievement of university students with dyslexia. Dyslexia. 2015;21(4):338–49. https://doi.org/10.1002/dys.1517.

    Article  PubMed  Google Scholar 

  58. Huc-Chabrolle M, Barthez MA, Tripi G, Barthelemy C, Bonnet-Brilhault F. Psychocognitive and psychiatric disorders associated with developmental dyslexia: a clinical and scientific issue. Encéphale. 2010;36(2):172–9. https://doi.org/10.1016/j.encep.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  59. Mammarella IC, Ghisi M, Bomba M, Bottesi G, Caviola S, Broggi F, Nacinovich R. Anxiety and depression in children with nonverbal learning disabilities, reading disabilities, or typical development. J Learn Disabil. 2016;49(2):130–9. https://doi.org/10.1177/0022219414529336.

    Article  PubMed  Google Scholar 

  60. Pennington BF, Bishop DV. Relations among speech, language, and reading disorders. Annu Rev Psychol. 2009;60:283–306. https://doi.org/10.1146/annurev.psych.60.110707.163548.

    Article  PubMed  Google Scholar 

  61. van Bergen E, van der Leij A, de Jong PF. The intergenerational multiple deficit model and the case of dyslexia. Front Hum Neurosci. 2014;8:346. https://doi.org/10.3389/fnhum.2014.00346.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hulme C, Snowling MJ. Reading disorders and dyslexia. Curr Opin Pediatr. 2016;28(6):1. https://doi.org/10.1097/MOP.0000000000000411.

    Article  Google Scholar 

  63. Wimmer H, Goswami U. The influence of orthographic consistency on reading development: word recognition in English and German children. Cognition. 1994;51(1):91–103. https://doi.org/10.1016/0010-0277(94)90010-8.

    Article  CAS  PubMed  Google Scholar 

  64. Zoccolotti P, De Luca M, Di Pace E, Judica E, Orlandi M, Spinelli D. Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence. Appl Psycholinguist. 1999;20(2):191–216. https://doi.org/10.1017/S0142716499002027.

    Article  Google Scholar 

  65. Galuschka K, Görgen R, Kalmar J, Haberstroh S, Schmalz X, Schulte-Körne G. Effectiveness of spelling interventions for learners with dyslexia: a meta-analysis and systematic review. Educ Psychol. 2020;55(1):1–20. https://doi.org/10.1080/00461520.2019.1659794.

    Article  Google Scholar 

  66. Tucci R, Savoia V, Bertolo L, Vio C, Tressoldi PE. Efficacy and efficiency outcomes of a training to ameliorate developmental dyslexia using the online software Reading Trainer®. Bollettino di Psicologia Applicata. 2015;273:53–9.

    Google Scholar 

  67. Pecini C, Spoglianti S, Bonetti S, Di Lieto MC, Guaran F, Martinelli A, Gasperini F, Cristofani P, Mazzotti S, Salvadorini R, Bargagna S, Palladino P, Cismondo D, Verga A, Zorzi C, Brizzolara D, Vio C, Chilosi AM. Training RAN or reading? A telerehabilitation study on developmental dyslexia. Dyslexia. 2019;25(3):318–31. https://doi.org/10.1002/dys.1619.

    Article  PubMed  Google Scholar 

  68. Given BK, Wasserman JD, Chari SA, Beattie K, Eden GF. A randomized, controlled study of computer-based intervention in middle school struggling readers. Brain Lang. 2008;106:83–97. https://doi.org/10.1016/j.bandl.2007.12.001.

    Article  PubMed  Google Scholar 

  69. Lovett MW, De Palma M, Frijters JC, Steinbach KA, Temple M, Benson NJ, Lacerenza L. Interventions for reading difficulties: a comparison of response to intervention by ELL and EFL struggling readers. J Learn Disabil. 2008;41:333–52.

    Article  PubMed  Google Scholar 

  70. Lovett MW, Lacerenza L, De Palma M, Frijters JC. Evaluating the efficacy of remediation for struggling readers in high school. J Learn Disabil. 2012;45:151–69. https://doi.org/10.1177/0022219410371678.

    Article  PubMed  Google Scholar 

  71. Scammacca N, Roberts G, Vaughn S, Edmonds M, Wexler J, Reutebuch CK, Torgesen JK. Interventions for adolescent struggling readers: a meta-analysis with implications for practice. Portsmouth: RMC Research Corporation, Center on Instruction; 2007.

    Google Scholar 

  72. Scammacca NK, Roberts G, Vaughn S, Stuebing KK. A meta-analysis of interventions for struggling readers in grades 4–12: 1980–2011. J Learn Disabil. 2015;48(4):369–90. https://doi.org/10.1177/0022219413504995.

    Article  PubMed  Google Scholar 

  73. Swanson HL, Hoskyn M, Lee C. Interventions for students with learning disabilities. New York: Guilford Press; 1999.

    Google Scholar 

  74. Williams K, Walker M, Vaughn S, Wanzek J. A synthesis of reading and spelling interventions and their effects on spelling outcomes for students with learning disabilities. J Learn Disabil. 2017;50:286–97. https://doi.org/10.1177/0022219415619753.

    Article  PubMed  Google Scholar 

  75. González M, García Espinel AI, Guzmán R. Remedial interventions for children with reading disabilities: speech perception an effective component in phonological training? J Learn Disabil. 2002;35:334–42. https://doi.org/10.1177/00222194020350040401.

    Article  Google Scholar 

  76. Jiménez J, Hernández-Valle I, Ramírez Santana G, Ortiz M, Rodrigo M, Estévez A, O’Shanahan I, Garcia E, Tabraue M. Computer speech-based remediation for reading disabilities: the size of spelling-to-sound unit in a transparent orthography. Span J Psychol. 2007;10(1):52–67. https://doi.org/10.1017/S1138741600006314.

    Article  PubMed  Google Scholar 

  77. Lorusso ML, Facoetti A, Pesenti S, Cattaneo C, Molteni M, Geiger G. Wider recognition in peripheral vision common to different subtypes of dyslexia. Vis Res. 2004;44:2413–24.

    Article  CAS  PubMed  Google Scholar 

  78. Lorusso ML, Facoetti A, Tolandoc A, Moltenia M. Tachistoscopic treatment of dyslexia changes the distribution of visual–spatial attention. Brain Cognit. 2005;57(2):135–42.

    Article  Google Scholar 

  79. Pecini C, Spoglianti S, Michetti S, Bonetti S, Di Lieto MC, Gasperini F, Cristofani P, Bozza M, Brizzolara D, Casalini C, Mazzotti S, Salvadorini R, Bargagna S, Chilosi A. Tele-rehabilitation in developmental dyslexia: methods of implementation and expected results. Minerva Pediatr. 2018;70(6):529–38. https://doi.org/10.23736/S0026-4946.16.04426-1.

    Article  PubMed  Google Scholar 

  80. Snellings P, Leij A, Jong P, Blok H. Enhancing the reading fluency and comprehension of children with reading disabilities in an orthographically transparent language. J Learn Disabil. 2009;42:291–305. https://doi.org/10.1177/0022219408331038.

    Article  PubMed  Google Scholar 

  81. Spencer-Smith KT. Benefits of a working memory training program for inattention in daily life: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0119522. https://doi.org/10.1371/journal.pone.0119522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bachmann C, Mengheri L. Dyslexia and fonts: is a specific font useful? Brain Sci. 2018;8(5):89.

    Article  PubMed Central  Google Scholar 

  83. Callens M, Whitney C, Tops W, Brysbaert M. No deficiency in left-to-right processing of words in dyslexia but evidence for enhanced visual crowding. Q J Exp Psychol. 2013;66(9):1803–17.

    Article  Google Scholar 

  84. Duranovic M, Senka S, Babic-Gavric B. Influence of increased letter spacing and font type on the reading ability of dyslexic children. Ann Dyslexia. 2018;68(1):218–28. https://doi.org/10.1007/s11881-018-0164-z.

    Article  PubMed  Google Scholar 

  85. Gori S, Facoetti A. How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. J Vis. 2015;15(1):1–20.

    Article  PubMed  Google Scholar 

  86. Hawelka S, Wimmer H. Impaired visual processing of multi-element arrays is associated with increased number of eye movements in dyslexic reading. Vis Res. 2005;45:855–63.

    Article  PubMed  Google Scholar 

  87. Martelli M, Di Filippo G, Spinelli D, Zoccolotti P. Crowding, reading, and developmental dyslexia. J Vis. 2009;9(4):1–18.

    Article  PubMed  Google Scholar 

  88. Moores E, Cassim R, Talcott J. Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia. 2011;49:3881–90. https://doi.org/10.1016/j.neuropsychologia.2011.10.005.

    Article  PubMed  Google Scholar 

  89. Spinelli D, De Luca M, Judica A, Zoccolotti P. Crowding effects on word identification in developmental dyslexia. Cortex. 2002;38:179–200.

    Article  PubMed  Google Scholar 

  90. Zorzi M, Barbiero C, Facoetti A, Lonciari I, Carrozzi M, Montico M, Bravar L, George F, Pech-Georgel C, Ziegler JC. Extra-large letter spacing improves reading in dyslexia. Proc Natl Acad Sci. 2012;109:11455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Noort M, Struys E, Bosch P. Transcranial magnetic stimulation research on reading and dyslexia: a new clinical intervention technique for treating dyslexia? Neuroimmunol Neuroinflammation. 2015;2:145–52.

    Article  Google Scholar 

  92. Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Menghini D. Evidence for reading improvement following tDCS treatment in children and adolescents with Dyslexia. Restor Neurol Neurosci. 2016;34(2):215–26. https://doi.org/10.3233/RNN-150561.

    Article  PubMed  Google Scholar 

  93. Costanzo F, Varuzza C, Rossi S, Sdoia S, Varvara P, Oliveri M, Koch G, Vicari S, Menghini D. Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. Neuroreport. 2016;27(5):295–300. https://doi.org/10.1097/WNR.0000000000000536.

    Article  PubMed  Google Scholar 

  94. Rios DM, Correia Rios M, Bandeira ID, Queiros Campbell F, de Carvalho VD, Lucena R. Impact of transcranial direct current stimulation on reading skills of children and adolescents with dyslexia. Child Neurol Open. 2018;5:1–8. https://doi.org/10.1177/2329048X18798255.

    Article  Google Scholar 

  95. Graham S, Harris KR, Chorzempa BF. Contribution of spelling instruction to the spelling, writing, and reading of poor spellers. J Educ Psychol. 2002;94:669–86. https://doi.org/10.1037/0022-0663.94.4.669.

    Article  Google Scholar 

  96. Noell GH, Connell JE, Duhon GJ. Spontaneous response generalization during whole word instruction: reading to spell and spelling to read. J Behav Educ. 2006;15:121–30. https://doi.org/10.1007/s10864-006-9016-8.

    Article  Google Scholar 

  97. Santoro LE, Coyne M, Simmons DC. The reading-spelling connection: developing and evaluating a beginning spelling intervention for children at risk of reading disability. Learn Disabil Res Pract. 2006;21(2):122–33. https://doi.org/10.1111/j.1540-5826.2006.00212.x.

    Article  Google Scholar 

  98. National Institute of Child Health and Human Development. Report of the National Reading Panel. Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction (NIH Publication No. 00-4769). Washington, DC: Government Printing Office; 2000.

    Google Scholar 

  99. Fletcher JM, Lyon GR, Fuchs LS, Barnes MA. Learning disabilities: from identification to intervention. Guilford: New York; 2007.

    Google Scholar 

  100. McArthur G, Castles A, Kohnen S, Larsen L, Jones K, Anandakumar T, Banales E. Sight word and phonics training in children with dyslexia. J Learn Disabil. 2015;48(4):391–407. https://doi.org/10.1177/0022219413504996.

    Article  PubMed  Google Scholar 

  101. Kohnen S, Nickels L, Brunsdon R, Coltheart M. Patterns of generalisation after treating sub-lexical spelling deficits in a child with mixed dysgraphia. J Res Read. 2008a;31(1):157–77. https://doi.org/10.1111/j.1467-9817.2007.00366.x.

    Article  Google Scholar 

  102. Kohnen S, Nickels L, Coltheart M. Training ‘rule-of-(E)’: further investigation of a previously successful intervention for a spelling rule in developmental mixed dysgraphia. J Res Read. 2010;33(4):392–413. https://doi.org/10.1111/j.1467-9817.2009.01425.x.

    Article  Google Scholar 

  103. Brunsdon R, Coltheart M, Nickels L. Treatment of irregular word spelling in developmental surface dysgraphia. Cogn Neuropsychol. 2005;22(2):213–51. https://doi.org/10.1080/02643290442000077.

    Article  PubMed  Google Scholar 

  104. Kohnen S, Nickels L, Coltheart M, Brunsdon R. Predicting generalization in the training of irregular-word spelling: treating lexical spelling deficits in a child. Cogn Neuropsychol. 2008b;25:343–75. https://doi.org/10.1080/02643290802003000.

    Article  PubMed  Google Scholar 

  105. Stadie N, Van de Vijver A. Linguistic and neuropsychological approach to remediation in a German case of developmental dysgraphia. Ann Dyslexia. 2003;53:280–99. https://doi.org/10.1007/s11881-003-0013-5.

    Article  Google Scholar 

  106. Wanzek J, Vaughn S, Wexler J, Swanson EA, Edmonds M, Kim A. A synthesis of spelling and reading interventions and their effects on the spelling outcomes of students with LD. J Learn Disabil. 2006;39(6):528–43. https://doi.org/10.1177/00222194060390060501.

    Article  PubMed  Google Scholar 

  107. Berninger VW, Nagy W, Tanimoto S, Thompson R, Abbott RD. Computer instruction in handwriting, spelling, and composing for students with specific learning disabilities in grades 4 to 9. Comput Educ. 2015;81:154–68.

    Article  PubMed  PubMed Central  Google Scholar 

  108. El Baki MA, Omar K, Aripin KNBN, Rahman TSA, Ithnin M, Syaiful A, Mohamad SNS, Madeehah TA, Muhammad T. A systematic review of computer-based remedial programs for primary schoolchildren diagnosed with dyslexia: results from Medline. Pediatrics. 2015;135(Supplement 1):S6. https://doi.org/10.1542/peds.2014-3330I.

    Article  Google Scholar 

  109. Rousselle L, Noël MP. Basic numerical skills in children with mathematics learning disabilities. A comparison of symbolic vs non-symbolic number magnitude processing. Cognition. 2007;102(3):361–95. https://doi.org/10.1016/j.cognition.2006.01.005.

    Article  PubMed  Google Scholar 

  110. De Smedt B, Noël MP, Gilmore C, Ansari D. How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ. 2013;2(2):48–55.

    Article  Google Scholar 

  111. Schwenk C, Sasanguie D, Kuhn J, Kempe S, Doebler P, Holling H. (Non-)symbolic magnitude processing in children with mathematical difficulties: a meta-analysis. Res Dev Disabil. 2017;64:152–67. https://doi.org/10.1016/j.ridd.2017.03.003.

    Article  PubMed  Google Scholar 

  112. Gouet C, Carvajal S, Halberda J, Peña M. Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition. 2020;197:104–54. https://doi.org/10.1016/j.cognition.2019.104154.

    Article  Google Scholar 

  113. Kroesbergen E, Luit JEH. Mathematics interventions for children with special educational needs: a meta-analysis. Remedial Spec Educ. 2003;24(2):97–114. https://doi.org/10.1177/07419325030240020501.

    Article  Google Scholar 

  114. Fuchs LS, Powell SR, Seethaler PM, Cirino PT, Fletcher JM, Fuchs D, Zumeta RO. Remediating number combination and word problem deficits among students with mathematics difficulties: a randomized control trial. J Educ Psychol. 2009;101:561–76. https://doi.org/10.1037/a0014701.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fuchs LS, Powell SR, Seethaler PM, Cirino PT, Fletcher JM, Fuchs D, Hamlett CL. The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learn Individ Differ. 2010;20:89–100. https://doi.org/10.1016/j.lindif.2009.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Powell SR, Fuchs LS, Fuchs D, Cirino PT, Fletcher JM. Do word-problem features differentially affect problem difficulty as a function of students’ mathematics difficulty with and without reading difficulty? J Learn Disabil. 2009;42(2):99–110.

    Article  PubMed  Google Scholar 

  117. Nelson G, Powell SR. A systematic review of longitudinal studies of mathematics difficulty. J Learn Disabil. 2018;51(6):523–39. https://doi.org/10.1177/0022219417714773.

    Article  PubMed  Google Scholar 

  118. Fletcher JM, Denton C, Franci D. Validity of alternative approaches for the identification of learning disabilities: operationalizing unexpected underachievement. J Learn Disabil. 2005;38(6):545–52.

    Article  PubMed  Google Scholar 

  119. Elliott D, Bunn L. Motor disorders in children with intellectual disabilities. In: Dewey D, Tupper DE, editors. The science and practice of neuropsychology. Developmental motor disorders: a neuropsychological perspective. The Guilford Press; 2004. p. 137–51.

    Google Scholar 

  120. Vuijk PJ, Hartman E, Scherder E, Visscher C. Motor performance of children with mild intellectual disability and borderline intellectual functioning. J Intellect Disabil Res. 2010;54(11):955–65. https://doi.org/10.1111/j.1365-2788.2010.01318.x.

    Article  CAS  PubMed  Google Scholar 

  121. Bhaumik S, Tromans S, Gumber R, Gangavati S. Clinical assessment including bedside diagnosis. In: Bhaumik S, Alexander R, editors. Oxford textbook of the psychiatry of intellectual disability. Oxford: Oxford University Press; 2020. p. 7–22.

    Chapter  Google Scholar 

  122. Gillberg C, Sebastian S, Fernell E, Nilsson G, Neville B. Febrile seizures and epilepsy: association with autism and other neurodevelopmental disorders in the child and adolescent twin study in Sweden. Pediatr Neurol. 2017;74:80–6.

    Article  PubMed  Google Scholar 

  123. Bernier R, Hudac CM, Chen Q, Zeng C, Wallace AS, Gerdts J, Earl R, Peterson J, Wolken A, Peters A, Hanson E, Goin-Kochel RP, Kanne S, Snyder LG, Chung WK. Developmental trajectories for young children with 16p11.2 copy number variation. Am J Med Genet B Neuropsychiatr Genet. 2017;174B:367–80.

    Article  CAS  Google Scholar 

  124. Barnevik Olsson M, Lundstro S, Westerlund J, Giacobini MB, Gillberg C, Fernell E. Preschool to school in autism: neuropsychiatric problems 8 years after diagnosis at 3 years of age. J Autism Dev Disord. 2016;46:2749–55.

    Article  CAS  PubMed  Google Scholar 

  125. Cunningham AC, Delport S, Cumines W, Busse M, Linden DEJ, Hall O, et al. Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. Br J Psychiatry. 2018;212:27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Péter Z, Oliphant ME, Fernandez TV. Motor stereotypies: a pathophysiological review. Front Neurosci. 2017;11:171. https://doi.org/10.3389/fnins.2017.00171.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Singer HS. Motor stereotypies. Semin Pediatr Neurol. 2009;16(2):77–81. https://doi.org/10.1016/j.spen.2009.03.008.

    Article  PubMed  Google Scholar 

  128. Singer HS, Mink JW, Gilbert DL, Jankovic J. Motor stereotypies. In: Singer HS, Mink JW, Gilbert DL, Jankovic J, editors. Movement Disorders in Childhood. 2nd ed. Waltham: Elsevier Academic Press; 2016. https://doi.org/10.1016/B978-0-12-411573-6.00008-5.

    Chapter  Google Scholar 

  129. Furniss F, Biswas AB. Self-injurious behavior in individuals with neurodevelopmental conditions. In: Matson JL, editor. Part of the ‘Autism and child psychology series’. Cham: Springer Nature; 2020.

    Google Scholar 

  130. Hedderly T. Childhood motor stereotypies: questions of definition and management. Dev Med Child Neurol. 2017;59(2):117–8. https://doi.org/10.1111/dmcn.13181.

    Article  PubMed  Google Scholar 

  131. Cervantes PE, Matson JL. Comorbid symptomology in adults with autism spectrum disorder and intellectual disability. J Autism Dev Disord. 2015;45:3961–70.

    Article  PubMed  Google Scholar 

  132. Darrow SM, Grados M, Sandor P, Hirschtritt ME, Illmann C, Osiecki L, Dion Y, King R, Pauls D, Budman CL, Cath DC, Greenberg E, Lyon GJ, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Autism Spectrum symptoms in a Tourette’s disorder sample. J Am Acad Child Adolesc Psychiatry. 2017;56(7):610–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mathews CA, Waller J, Glidden D, Lowe TL, Herrera LD, Budman CL, et al. Self injurious behaviour in Tourette syndrome: correlates with impulsivity and impulse control. J Neurol Neurosurg Psychiatry. 2004;75(8):1149–55. https://doi.org/10.1136/jnnp.2003.020693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Raznahan AC, Joinson C, Callaghan FO, Osborne JP, Bolton PF. Psychopathology in tuberous sclerosis: an overview and findings in a population-based sample of adults with tuberous sclerosis. J Intellect Disabil Res. 2006;50(8):561–9. https://doi.org/10.1111/j.1365-2788.2006.00828.x.

    Article  CAS  PubMed  Google Scholar 

  135. Shelley BP, Robertson MM, Turk J. An individual with Gilles de la Tourette syndrome and Smith–Magenis microdeletion syndrome: is chromosome 17p11.2 a candidate region for Tourette syndrome putative susceptibility genes? J Intellect Disabil Res. 2007;51(8):620–4. https://doi.org/10.1111/j.1365-2788.2006.00943.x.

    Article  CAS  PubMed  Google Scholar 

  136. Barabas G, Wardell B, Sapiro M, Matthews WS. Coincident Down’s and Tourette syndromes: three case reports. J Child Neurol. 1986;1(4):358–60.

    Article  CAS  PubMed  Google Scholar 

  137. Kerbeshian J, Burd L. Comorbid Down’s syndrome, Tourette syndrome and intellectual disability: registry prevalence and developmental course. J Intellect Disabil Res. 2000;44(1):60–7. https://doi.org/10.1046/j.1365-2788.2000.00254.x.

    Article  PubMed  Google Scholar 

  138. Tartaglia N, Davis S, Hench A, Nimishakavi S, Beauregard R, Reynolds A, et al. A new look at XXYY syndrome: medical and psychological features. Am J Med Genet A. 2008;146A:1509–22.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Schneider SA, Robertson MM, Rizzo R, Turk J, Bhatia KP, Orth M. Fragile X syndrome associated with tic disorders. Mov Disord. 2008;23(8):1108–12. https://doi.org/10.1002/mds.21995.

    Article  PubMed  Google Scholar 

  140. Roessner V, Plessen KJ, Rothenberger A, Ludolph AG, Rizzo R, Skov L, Strand G, Stern JS, Termine C, Hoekstra PJ, the ESSTS Guidelines Group. European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment. Eur Child Adolesc Psychiatry. 2011;20:173–96. https://doi.org/10.1007/s00787-011-0163-7.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Stansfield J. Prevalence of stuttering and cluttering in adults with mental handicaps. J Ment Defic Res. 1990;34:287–307.

    PubMed  Google Scholar 

  142. Shriberg LD, Strand EA, Jakielski KJ, Mabie HL. Estimates of the prevalence of speech and motor speech disorders in persons with complex neurodevelopmental disorders. Clin Linguist Phon. 2019;33(8):707–36.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dodd B. A comparison of the phonological systems of mental age matched, normal, severely subnormal and Down’s syndrome children. Br J Disord Commun. 1976;11:27–42.

    Article  CAS  PubMed  Google Scholar 

  144. Rosin M, Swift E, Bless D, Vettel K. Communication profiles in adolescents with Down syndrome. J Childhood Commun Disord. 1988;12:49–64.

    Article  Google Scholar 

  145. Roberts J, Long SH, Malkin C, Barnes E, Skinner M, Hennon EA, Anderson K. A comparison of phonological skills of boys with fragile X syndrome and Down syndrome. J Speech Lang Hear Res. 2005;48(5):980–95. https://doi.org/10.1044/1092-4388(2005/067).

    Article  PubMed  Google Scholar 

  146. Solot CB, Sell D, Mayne A, Baylis AL, Persson C, Jackson O, McDonald-McGinn DM. Speech-language disorders in 22q11.2 deletion syndrome: best practices for diagnosis and management. Am J Speech Lang Pathol. 2019;28(3):984–99. https://doi.org/10.1044/2019_AJSLP-16-0147.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Herrero MJ, Gitton Y. The untold stories of the speech gene, the FOXP2 cancer gene. Genes Cancer. 2018;9:1–2.

    Article  Google Scholar 

  148. Morgan A, Fisher SE, Scheffer I, Hildebrand M. FOXP2-related speech and language disorders. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle: University of Washington; 2016. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/.

    Google Scholar 

  149. Rapin I, Dunn MA, Dunn MA, Allen DA, Stevens MC, Fein D. Subtypes of language disorders in school-age children with autism. Dev Neuropsychol. 2009;34(1):66–84.

    Article  PubMed  Google Scholar 

  150. Cleland J, Gibbon FE, Peppé SJ, O’Hare A, Rutherford M. Phonetic and phonological errors in children with high functioning autism and Asperger syndrome. Int J Speech Lang Pathol. 2010;12(1):69–76.

    Article  PubMed  Google Scholar 

  151. Shriberg LD, Paul R, Black LM, van Santen JP. The hypothesis of apraxia of speech in children with autism spectrum disorder. J Autism Dev Disord. 2011;41(4):405–26.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Visser S, Kogan MD. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics. 2011;127(6):1034–42. https://doi.org/10.1542/peds.2010-2989.

    Article  PubMed  Google Scholar 

  153. Kent RD, Vorperian HK. Speech impairment in down syndrome: a review. J Speech Lang Hear Res. 2013;56(1):178–210.

    Article  PubMed  Google Scholar 

  154. Briley PM, Ellis C. The coexistence of disabling conditions in children who stutter: evidence from the National Health Interview Survey. J Speech Lang Hear Res. 2018;61:2895–905.

    Article  PubMed  Google Scholar 

  155. Paul R, Dykens E, Leckman JF, Watson M, Breg WR, Cohen DJ. A comparison of language characteristics of mentally retarded adults with fragile X syndrome and those with nonspecific mental retardation and autism. J Autism Dev Disord. 1987;17:457–68.

    Article  CAS  PubMed  Google Scholar 

  156. Ferrier LJ, Bashir AS, Meryash DL, Johnston J, Wolff P. Conversational skills of individuals with fragile-X syndrome: a comparison with autism and Down syndrome. Dev Med Child Neurol. 1991;33:776–88.

    Article  CAS  PubMed  Google Scholar 

  157. Van Borsel J, Tetnowski JA. Fluency disorders in genetic syndromes. J Fluen Disord. 2007;32(4):279–96. https://doi.org/10.1016/j.jfludis.2007.07.002.

    Article  Google Scholar 

  158. Swineford LB, Thurm A, Baird G, Wetherby AM, Swedo S. Social (Pragmatic) communication disorder: a research review of this new DSM-5 diagnostic category. J Neurodev Disord. 2014;6:41. http://www.jneurodevdisorders.com/content/6/1/41

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ouss L, Leunen D, Laschet J, Chemaly N, Barcia G, Losito EM, et al. Autism spectrum disorder and cognitive profile in children with Dravet syndrome: delineation of a specific phenotype. Epilepsia Open. 2019;4:40–53.

    Article  PubMed  Google Scholar 

  160. Kim YS, Fombonne E, Koh YJ, Kim SJ, Cheon KA, Leventhal BL. A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. J Am Acad Child Adolesc Psychiatry. 2014;53(5):500–8. https://doi.org/10.1016/j.jaac.2013.12.021.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Cascella PW. Standardised speech-language tests and students with intellectual disability: a review of normative data. J Intellect Develop Disabil. 2016;31(2):120–4.

    Article  Google Scholar 

  162. Deb S, Iyer A. Clinical interviews. In: Sturmey P, editor. Mood disorders in people with mental retardation. New York: NADD Press; 2005. p. 159–73.

    Google Scholar 

  163. Karas M, Laud J. The communication needs of people with profound and multiple learning disabilities. Optometry Pract. 2015;15(2):59–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumitro Shoumi Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb, S.S., Roy, M., Bachmann, C., Bertelli, M.O. (2022). Specific Learning Disorders, Motor Disorders, and Communication Disorders. In: Bertelli, M.O., Deb, S.(., Munir, K., Hassiotis, A., Salvador-Carulla, L. (eds) Textbook of Psychiatry for Intellectual Disability and Autism Spectrum Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-95720-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95720-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95719-7

  • Online ISBN: 978-3-319-95720-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics