Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 29))

  • 512 Accesses

Abstract

This chapter reports experimental investigations on transport properties in high performance concrete. The first part looks at the evolution of the different transport properties during the heating of concrete. A second part reports the experimental results on the evolution of permeability of concrete (with and without polypropylene fibres) after heating. The third part presents a discussion of the influence of concrete parameters and heating conditions on mass transport at temperature above 100 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A., Carcasses M. and Ollivier J.-P.: Gas permeability of concrete in relation to its degree of saturation. Materials and Structures/Matériaux et Constructions, 32(January-February), 3–8 (1999)

    Google Scholar 

  • Alarcon-Ruiz L., Dal Pont M.B.S., Feraille A.: Size Effect in Concrete Intrinsic Permeability Measurements. Transp. Porous. Med. 85, 541–564 (2010)

    Google Scholar 

  • Bai J, Wild S, Sabir B.B.: Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth. Cem. Concr. Res. 32 1813–21 (2002)

    Google Scholar 

  • Billard Y.: Contribution à l’étude des transferts de fluides au sein d’une paroi en béton. Thèse, Insa de Lyon, 187p. (2003)

    Google Scholar 

  • Carman P.C.: Flow of gases through porous media. London – Butterworth’s scientific publications, London, 169p. (1956)

    Google Scholar 

  • Chen X.-T., Rougelot Th., Davy C.A., Chen W., Agostini F., Skoczylas F., Bourbon X.: Experimental evidence of a moisture clog effect in cement-based materials under temperature. Cement and Concrete Research 39, 1139–1148 (2009)

    Google Scholar 

  • Choinska M., Khelidj A., Chatzigeorgiou G., Pijaudier-Cabot G.: Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cement and Concrete Research 37, 79–88 (2007)

    Google Scholar 

  • Claudot-Loosveldt H.: Etude expérimentale des comportements hydraulique et poromécanique d’un mortier sain ou dégradé chimiquement. Dissertation, Université des Sciences et technologies de Lille (2002)

    Google Scholar 

  • Collignon B., Moyne C., Guichard J.-L., Perrot C., Jannot Y.: Modelling the pressure dependence and the influence of added polymeric fibers on the permeability of refractory concretes. Ceramics International 37, 627–634 (2011)

    Google Scholar 

  • Dal Pont S.: Lien entre la perméabilité et l’endommagement dans les bétons à haute température. Dissertation, Ecole Nationale des Ponts et Chaussées, Paris (2004)

    Google Scholar 

  • Demirel B., Keles-Temur O.: Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Safety Journal 45, 385–391 (2010)

    Google Scholar 

  • El-Dieb A.S., Hooton R.D.: Water-permeability measurement of high performance concrete using a high-pressure triaxial cell. Cement and Concrete Research 25(6), 1199–1208 (1995)

    Google Scholar 

  • Gallé C., Sercombe J.: Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperature. Materials and Structures 34, 619–628 (2001)

    Google Scholar 

  • Gardner D.R., Lark R.J., Barr B.: The effect of conditioning to a predetermined weight loss on the permeability of concrete. Construction and Building Materials 21, 83–89 (2007)

    Google Scholar 

  • Guneyisi E., Gesoglu M., Karaoglu S., Mermerdas K.: Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials 34, 120–130 (2012)

    Google Scholar 

  • Hager I., Tracz T.: The impact of the amount and length of fibrillated polypropylene fibres on the properties of HPC exposed to high temperature. Archives Of Civil Engineering, LVI. 1, 57–68 (2010)

    Google Scholar 

  • Hamani A.A., Turcy Ph., Ait-Mokhtar A.: Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cement and Concrete Research 42, 490–498 (2012)

    Google Scholar 

  • Haniche R., Debicki G., Bouamrane A., Zeltz E.: Gas transfers and flow process through concrete maintained in temperature. Proceedings of Fire Spalling, RILEM workshop, Delft, The Netherlands, 5–7 October 2011

    Google Scholar 

  • Haniche R.: Contribution à l’étude des bétons portés en température/ Evolution des propriétés de transfert. Thèse de doctorat, INSA-LYON, Décembre (2011)

    Google Scholar 

  • Hui-sheng S., Bi-wan X., Tao S. and Xiao-Chen Z.: Determination of gas permeability of high performance concrete containing fly ash. Materials and Structures/Matériaux et Structures, 41, 1051–1056 (2008)

    Google Scholar 

  • Jooss M., Reinhardt H.W.: Permeability and diffusivity of concrete as function of temperature. Cement and Concrete Research 32, 1497–1504 (2002)

    Google Scholar 

  • Kalifa P., Tsimbrovska M.: Comportement des BHP à hautes températures. Etat de la question et résultats expérimentaux. Cahier de CSTB, 3078 (1998)

    Google Scholar 

  • Kalifa P., Chéné G., Gallé C.: High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure. Cement and Concrete Research 31, 1487–1499 (2001)

    Google Scholar 

  • Khan M.L.: Permeation of high performance concrete. ASCE Journal of materials in civil engineering. 15, 84–92 (2003)

    Google Scholar 

  • Klinkenberg L. J.: The permeability of porous media to liquids and gases. Drilling and production Practices, 200–214, American Petroleum Institute, New York (1941)

    Google Scholar 

  • Kollek J. J.: The determination of the permeability of concrete to oxygen by the Cembureau method - a recommendation. Materials and Structures, 22(3), 225–230 (1989)

    Google Scholar 

  • Lion M., Skoczylas F., Lafhaj Z., Sersar M.: Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature. Cement and Concrete Research 35, 1937–1942 (2005)

    Google Scholar 

  • Lion M.: Influence de la température sur le comportement poromécanique et hydrauliques d’une roche carbonatée et d’un mortier. Etudes expérimentales, Thèse de doctorat, Université Lille 1, 193 p (2004)

    Google Scholar 

  • Liu X., Ye G., De Schutter G., Yuan Y., Taerwe L.: On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cement and Concrete Research, 38, 487–499 (2008)

    Google Scholar 

  • Luckner L.M., van Genuchten Th., Nielsen D.R.: A consistent set of parametric models for the flow of immiscible fluids in the subsurface. Water Resour. Res. 25, 2187–2193 (1989)

    Google Scholar 

  • Mainguy M.: Modèles de diffusion non-linéaires en milieu poreux – Applications à la dissolution et au séchage des matériaux cimentaires. Dissertation. Ecole nationale des ponts et chaussées, 263 p. (1999)

    Google Scholar 

  • Mindeguia J.C.: Contribution expérimentale à la compréhension des risques d’instabilité thermique des bétons. Thèse de doctorat à l’université de Pau et des pays de l’Adour. 234 p. (2009)

    Google Scholar 

  • Noumowe A.N., Siddique R., Debicki G.: Permeability of high-performance concrete subjected to elevated temperature (600 _C). Construction and Building Materials 23, 1855–1861 (2009)

    Google Scholar 

  • Parrot L.J.: Moisture conditioning and transport properties of concrete test specimens. Materials and Structures 27, 460–468 (1994)

    Google Scholar 

  • Poon C.-S., Azhar S., Anson M., Wong Y.-L.: Performance of metakaolin concrete at elevated temperatures. Cement and Concrete Composites 25, 83–89 (2003)

    Google Scholar 

  • Poyet S.: Experimental investigation of the effect of temperature on the first desorption isotherm of concrete. Cement and Concrete Research 39, 1052–1059 (2009)

    Google Scholar 

  • Rafat S., Deepinder K.: Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research 3(1), 45–51, January (2012)

    Google Scholar 

  • RILEM TC 129-MHT: Compressive strength for service and accident conditions. Materials and Structures, 28, pp 410–414 (1995)

    Google Scholar 

  • Sancak E., Sari Y.D., Simsek O.: Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites 30, 715–721 (2008)

    Google Scholar 

  • Scherer G.W., Valenza II John J., Simmons G.: New methods to measure liquid permeability in porous materials. Cement and Concrete Research 37, 386–397 (2007)

    Google Scholar 

  • Schneider U., Herbst H.J.: Permeabilität und Porosität von Beton bei hohen Temperaturen [Permeability and porosity of concrete at high temperatures], Deutscher Ausschuss für Stahlbeton, Berlin, in German, Tech. Rep. vol. 403 (1989)

    Google Scholar 

  • Śliwinski J., Leonard R., Tracz T.: Influence of High Temperature on the Residual Permeability of High Performance Concrete (in Polish), Proc. O Cement, Wisła (2004)

    Google Scholar 

  • Sofren L. S., Horiguchi T.: Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition. Cement and Concrete Research 36, 1672–1678 (2006)

    Google Scholar 

  • Zeiml M., Lackner R., Leithner D., Eberhardsteiner J.: Identification of residual gas-transport properties of concrete subjected to high temperatures. Cement and Concrete Research 38, 699–716 (2008)

    Google Scholar 

  • Zhang B.: Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures. Fire Safety Journal 46(8), 543–549 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Debicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debicki, G. (2019). Mass Transport Properties. In: Pimienta, P., Jansson McNamee, R., Mindeguia, JC. (eds) Physical Properties and Behaviour of High-Performance Concrete at High Temperature. RILEM State-of-the-Art Reports, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-95432-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95432-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95431-8

  • Online ISBN: 978-3-319-95432-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics