Skip to main content

DNA Mechanics and Topology

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints— entanglement and supercoiling—impact physical and mechanical responses. Models for protein–DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein–DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Linking topology is perfectly well defined only for closed curves or polymers. However, it is sometimes useful to define linkage of open curves, using suitably defined closure boundary conditions, e.g., closing chains at infinity by extending them with long straight paths. This introduces small corrections to the properties of entanglement of interest here (primarily estimates of linking number). Qualitatively this can be understood by considering the definition of linking number in terms of signed crossings (Fig. 2.4). If we imagine deforming part of one of the links of Fig. 2.3 so that it closes far from the other crossings (not introducing any new crossings in the process) the topology and linking number of the polymer will be unchanged. This will be true for all closure paths that do not introduce additional strand crossings, indicating a rather weak dependence of linking number on closure boundary conditions, and further allowing us to talk about the topology of the region of the polymers not including the closure in a reasonably well-defined way. This is particularly true for linking of stretched polymers as will be discussed below; see, e.g., [34].

  2. 2.

    The total twist of a DNA molecule is often written as the excess twist ΔTw plus the intrinsic twist, or Tw = ΔTw + Lk0 = ΔTw + Lh, where ΔTw = Θ∕(2π).

  3. 3.

    Electrostatic interactions are usually treated using a far-field approximation of the Poisson–Boltzmann equation, where the electrostatic potential is that of the screened-Coulomb type [7, 43].

  4. 4.

    A nick on a DNA means there is a break in one of the strands of the double helix. Nicks act as a “sink” for twist in the molecule via mechanical rotation about the single-stranded region. In other words, nicked DNAs are torsionally unconstrained.

  5. 5.

    Note that the extension curves for nicked DNA braids (Fig. 2.9b) are symmetric for positive and negative catenations, as a virtue of the individual dsDNAs being torsionally unconstrained.

  6. 6.

    In vivo, type II topos may control 〈Ca〉 via selective decatenation, thus driving disentanglement.

  7. 7.

    The shape of the confining volume is an interesting aspect. For tight cylindrical confinement, chains will tend to separate from one another along the cylinder, to minimize their stretching (and therefore to maximize their entropy). This effect has been proposed to play a role in the segregation of bacterial chromosomes in rod-shaped bacteria [87, 88], although folding and compaction of bacterial chromosomes may also play a role in their separation [89].

  8. 8.

    K d is used widely by biochemists; note that the equilibrium constant used widely by chemists is just K eq ≡ 1∕K d.

References

  1. Goodsell DS (1992) The machinery of life. Springer, New York

    Google Scholar 

  2. Feig M, Marko JF, Pettitt M (2003) Metal-ligand interactions. In: Russo N, Salahub DR, Witko M (eds) NATO science series II, vol 116. Kluwer Academic, Dordrecht, pp 193–204

    Google Scholar 

  3. Rybenkov VV, Cozzarelli NR, Vologodskii AV (1993) Proc Natl Acad Sci USA 11:5307

    Article  Google Scholar 

  4. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Science 282:902

    Article  CAS  PubMed  Google Scholar 

  5. Maier B, Bensimon D, Croquette V (2000) Proc Natl Acad Sci USA 97:12002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagerman PJ (1988) Annu Rev Biophys Biophys Chem 17:265

    Article  CAS  PubMed  Google Scholar 

  7. Marko JF, Siggia ED (1995) Macromolecules 28:8759

    Article  CAS  Google Scholar 

  8. Yamakawa H, Stockmayer WH (1972) J Chem Phys 57:2843

    Article  CAS  Google Scholar 

  9. Schopflin R, Brutzer H, Muller O, Seidel R, Wedemann G (2012) Biophys J 103:323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Du Q, Kotlyar A, Vologodskii A (2008) Nucleic Acids Res 36:1120

    Article  CAS  PubMed  Google Scholar 

  11. Le TT, Kim HD (2014) Nucleic Acids Res 42:10786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Nature 389:251

    Article  CAS  PubMed  Google Scholar 

  13. Lowary PT, Widom J (1998) J Mol Biol 276:19

    Article  CAS  PubMed  Google Scholar 

  14. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JZ, Widom J (2006) Nature 442:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marko JF (2005) Introduction to single-DNA micromechanics. In: Multiple aspects of DNA and RNA from biophysics to bioinformatics. Les Houches Session LXXXII. Elsevier, New York, pp 211–270

    Google Scholar 

  16. de Gennes P-G (1979) Scaling concepts in polymer physics. Sec. I.4.1. Cornell University Press, Ithaca

    Google Scholar 

  17. Saleh OA, McIntosh DB, Pincus P, Ribeck N (2009) Phys Rev Lett 102:068301

    Article  CAS  PubMed  Google Scholar 

  18. McIntosh DB, Ribeck N, Saleh OA (2009) Phys Rev E 80:041803

    Article  CAS  Google Scholar 

  19. Neuman KC, Lionnet T, Allemand J-F (2007) Annu Rev Mater Res 37:33

    Article  CAS  Google Scholar 

  20. Yan J, Kawamura R, Marko JF (2005) Phys Rev E 71:061905

    Article  CAS  Google Scholar 

  21. Smith SB, Finzi L, Bustamante C (1992) Science 258:1122

    Article  CAS  PubMed  Google Scholar 

  22. Odijk T (1995) Macromolecules 28:7016

    Article  CAS  Google Scholar 

  23. SantaLucia J Jr (1998) Proc Natl Acad Sci USA 95:1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Proc Natl Acad USA 94:11935

    Article  CAS  Google Scholar 

  25. Bockelmann U, Thomen Ph, Viasnoff V, Heslot F (2002) Biophys J 82:1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lubensky DK, Nelson DR (2000) Phys Rev Lett 85:1572

    Article  CAS  PubMed  Google Scholar 

  27. Lubensky DK, Nelson DR (2002) Phys Rev E 65:031917

    Article  CAS  Google Scholar 

  28. Cluzel P, Lebrun A, Heller C, Lavery R, Viovy JL, Chatenay D, Caron F (1996) Science 271:792

    Article  CAS  PubMed  Google Scholar 

  29. Smith SB, Cui Y, Bustamante C (1996) Science 271:795

    Article  CAS  PubMed  Google Scholar 

  30. Strick TR, Bensimon D, Croquette V (1999) In: Bradbury EM, Pongor S (eds) Structural biology and functional genomics. NATO science series, vol 3. Kluwer Academic, Boston, pp 87–96

    Google Scholar 

  31. Bryant Z, Stone MD, Gore J, Cozzarelli NR, Bustamante C (2003) Nature 424:338

    Article  CAS  PubMed  Google Scholar 

  32. Sheinin MY, Forth S, Marko JF, Wang MD (2011) Phys Rev Lett 107:108102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marko JF, Neukirch S (2013) Phys Rev E 88:062722

    Article  CAS  Google Scholar 

  34. Vologodskii AV, Marko JF (1997) Biophys J 73:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landau LD, Lifshitz EM (1986) Theory of elasticity, Ch. II. Pergamon, New York

    Google Scholar 

  36. White JH (1969) Am J Math 91:693

    Article  Google Scholar 

  37. Fuller FB (1971) Proc Natl Acad Sci USA 68:815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marko JF, Siggia ED (1994) Science 265:506

    Article  CAS  PubMed  Google Scholar 

  39. Marko JF, Siggia ED (1995) Phys Rev E 52:2912

    Article  CAS  Google Scholar 

  40. Marko JF, Neukirch S (2012) Phys Rev E 85:011908

    Article  CAS  Google Scholar 

  41. Helfrich W, Harbich W (1985) Chem Scr 25:32

    CAS  Google Scholar 

  42. Burkhardt TW (1997) J Phys A 30:L167

    Article  CAS  Google Scholar 

  43. Ubbink J, Odijk T (1999) Biophys J 76:2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Odijk T (1983) Macromolecules 16:1340

    Article  CAS  Google Scholar 

  45. Neukirch S, Marko JF (2011) Phys Rev Lett 106:138104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Marko JF (2007) Phys Rev E 76:021926

    Article  CAS  Google Scholar 

  47. Moroz JD, Nelson P (1997) Proc Natl Acad Sci USA 94:14418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moroz JD, Nelson P (1998) Macromolecules 31:6333

    Article  CAS  Google Scholar 

  49. Strick TR, Allemand J-F, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835

    Article  CAS  PubMed  Google Scholar 

  50. Fuller FB (1978) Proc Natl Acad Sci USA 75:3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Love AEH (1944) Treatise on the mathematical theory of elasticity, Sec. 264. Dover, New York

    Google Scholar 

  52. Banigan EJ, Marko JF (2014) Phys Rev E 89:062706

    Article  CAS  Google Scholar 

  53. Forth S, Sheinin MY, Daniels B, Sethna JP, Wang MD (2008) Phys Rev Lett 100:148301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mosconi F, Allemand JF, Bensimon D, Croquette V (2009) Phys Rev Lett 102:078301

    Article  PubMed  CAS  Google Scholar 

  55. Zhang H, Marko JF (2008) Phys Rev E 77:031916

    Article  CAS  Google Scholar 

  56. Matek C, Ouldridge TE, Doye JPK, Louis AA (2015) Sci Rep 5:7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ganji M, Kim SH, Van Der Torre J, Abbondanzieri E, Dekker C (2016) Nano Lett 16:4699

    Article  CAS  PubMed  Google Scholar 

  58. Dittmore A, Brahmachari S, Takagi Y, Marko JF, Neuman KC (2017) Phys Rev Lett 119:147801

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gowers DM, Halford SE (2003) EMBO J 22:1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lomholt MA, van den Broek B, Kalisch SMJ, Wuite GJL, Metzler R (2009) Proc Natl Acad Sci USA 106:8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA (1999) Cell 98:397

    Article  CAS  PubMed  Google Scholar 

  62. Charvin G, Bensimon D, Croquette V (2003) Proc Natl Acad Sci USA 100:9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stone MD, Bryant Z, Crisona NJ, Smith SB, Vologodskii A, Bustamante C, Cozzarelli NR (2003) Proc Natl Acad Sci USA 100:8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neuman KC, Charvin G, Bensimon D, Croquette V (2009) Proc Natl Acad Sci USA 106:6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bai H, Sun M, Ghosh P, Hatfull GF, Grindley NDF, Marko JF (2011) Proc Natl Acad Sci USA 108:7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seol Y, Hardin AH, Strub MP, Charvin G, Neuman KC (2013)Nucleic Acids Res 41:4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Terekhova K, Marko JF, Mondragón A (2014) Nucleic Acids Res 42:11657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brahmachari S, Marko JF (2017) Phys Rev E 95:052401

    Article  PubMed  PubMed Central  Google Scholar 

  69. Charvin G, Vologodskii A, Bensimon D, Croquette V (2005) Biophys J 88:4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Argudo D, Purohit PK (2013) Math Mech Solids 18:649

    Article  Google Scholar 

  71. Brahmachari S, Gunn KH, Guintoli RD, Mondragón A, Marko JF (2017) Phys Rev Lett 119:188103

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bancaud A, Conde e Silva N, Barbi M, Wagner G, Allemand JF, Mozziconacci J, Lavelle C, Croquette V, Victor JM, Prunell A, Viovy JL (2006) Nat Struct Mol Biol 13:444

    Article  CAS  Google Scholar 

  73. Bancaud A, Wagner G, Conde e Silva N, Lavelle C, Wong H, Mozziconacci J, Barbi M, Sivolob A, Le Cam E, Mouawad L, Viovy JL, Victor JM, Prunell A (2007) Mol Cell 27:135

    Google Scholar 

  74. Yan J, Magnasco MO, Marko JF (1999) Nature 401:932

    Article  CAS  PubMed  Google Scholar 

  75. Vologodskii AV, Zhang W, Rybenkov VV, Podtelezhnikov AA, Subramanian D, Griffith JD, Cozzarelli NR (2001) Proc Natl Acad Sci USA 98:3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koster DA, Crut A, Shuman S, Bjornsti MA, Dekker NH (2010) Cell 142:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Terekhova K, Marko JF, Mondragon A (2013) Biochem Soc Trans 41:571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rybenkov VV, Ullsperger C, Vologodskii AV, Cozzarelli NR (1997) Science 277:648

    Article  Google Scholar 

  79. Buck GR, Zechiedrich EL (2004) J Mol Biol 340:933

    Article  CAS  PubMed  Google Scholar 

  80. Sumners DW, Whittington SG (1988) J Phys A Math Gen 21:1689

    Article  Google Scholar 

  81. Koniaris K, Muthukumar M (1991) Phys Rev Lett 66:2211

    Article  CAS  PubMed  Google Scholar 

  82. Shaw SY, Wang JC (1993) Science 260:533

    Article  CAS  PubMed  Google Scholar 

  83. des Cloizeaux J (1981) J Phys (Paris) 42:L433

    Google Scholar 

  84. Tanaka F (1982) Prog Theor Phys 68:148–163; Prog Theor Phys 68:164–177

    Article  Google Scholar 

  85. Marko JF (2009) Phys Rev E 79:051905

    Article  CAS  Google Scholar 

  86. Baiesi M, Orlandini E, Stella AL (2001) Phys Rev Lett 87:070602

    Article  CAS  PubMed  Google Scholar 

  87. Jun S, Mulder B (2006) Proc Natl Acad Sci USA 103:12388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pelletier J, Halvorsen K, Ha BY, Paparcone R, Sandler SJ, Woldringh CL, Wong WP, Jun S (2012) Proc Natl Acad Sci USA 109:2649

    Article  Google Scholar 

  89. Hadizadeh Yazdi N, Guet CC, Johnson RC, Marko JF (2012) Mol Microbiol 86:1318

    Article  CAS  PubMed  Google Scholar 

  90. Marko JF (2011) J Stat Phys 142:1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Swinger KK, Lemburg KM, Zhang Y, Rice PA (2003) EMBO J 22:3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grindley NDF, Whiteson KL, Rice PA (2006) Annu Rev Biochem 75:567

    Article  CAS  PubMed  Google Scholar 

  93. Taneja B, Patel A, Slesarev A, Mondragon A (2006) EMBO J 25:398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Halford SE, Marko JF (2004) Nucleic Acids Res 32:3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Parsaeian A, de la Cruz MO, Marko JF (2013) Phys Rev E 88:040703R

    Article  CAS  Google Scholar 

  96. Graham J, Marko JF (2011) Nucleic Acids Res 39:2249

    Article  CAS  PubMed  Google Scholar 

  97. Loparo JJ, Kulczyk AW, Richardson CC, van Oijen AM (2011) Proc Natl Acad Sci USA 108:3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Joshi CP, Panda D, Martell DJ, Andoy NM, Chen TY, Gaballa A, Helmann JD, Chen P (2012) Proc Natl Acad Sci USA 109:15121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ha T (2013) Cell 154:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, Sung P, Greene EC (2014) PLOS One 9:e87922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Giuntoli RD, Linzer NB, Banigan EJ, Sing CE, M. Olvera de la Cruz, Graham JS, Johnson RC, Marko JF (2015) J Mol Biol 427:3123

    Google Scholar 

  102. Kamar RI, Banigan EJ, Erbas A, Giuntoli RD, Olvera de la Cruz M, Johnson RC, Marko JF (2017) Proc Natl Acad Sci USA 114:E3251-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hadizadeh N, Johnson RC, Marko JF (2016) J Bact 198:1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Léger JF, Robert J, Bordieu L, Chatenay D, Marko JF (1998) Proc Natl Acad Sci USA 95:12295

    Article  PubMed  PubMed Central  Google Scholar 

  105. Marko JF, Siggia ED (1997) Biophys J 73:2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sankararaman S, Marko JF (2005) Phys Rev E 71:021911

    Article  CAS  Google Scholar 

  107. Blumberg S, Tkachenko AV, Meiners JC (2005) Biophys J 88:1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pope LH, Bennink ML, van Leijenhorst-Groener KA, Nikova D, Greve J, Marko JF (2005) Biophys J 88:3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yan J, Maresca T, Skoko D, Adams CD, Xiao B, Christensen M, Heald R, Marko JF (2007) Mol Biol Cell 18:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Killian JL, Li M, Sheinin MY, Wang MD (2012) Curr Opin Struct Biol 22:80

    Article  CAS  PubMed  Google Scholar 

  111. Rimsky S, Travers A (2011) Curr Opin Microbiol 14:136

    Article  CAS  PubMed  Google Scholar 

  112. Ali BMJ, Amit R, Braslavsky I, Oppenheim AB, Gileadi O, Stavans J (2001) Proc Natl Acad Sci USA 98:10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Proc Natl Acad Sci USA 101:6969

    Article  PubMed  PubMed Central  Google Scholar 

  114. Skoko D, Wong B, Johnson RC, Marko JF (2004) Biochemistry 43:13867

    Article  CAS  PubMed  Google Scholar 

  115. Skoko D, Yoo D, Bai H, Schnurr B, Yan J, McLeod SM, Marko JF, Johnson RC (2006) J Mol Biol 36:777

    Article  CAS  Google Scholar 

  116. McCauley MJ, Rueter EM, Rouzina I, Maher III LJ, Williams MC (2012) Nucleic Acids Res 41:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Xiao B, Zhang H, Johnson RC, Marko JF (2011) Nucleic Acids Res 39:5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang H, Marko JF (2010) Phys Rev E 82:051906

    Article  CAS  Google Scholar 

  119. Finzi L, Gelles J (1995) Science 267:378–380

    Article  CAS  PubMed  Google Scholar 

  120. Splinter E, Heath H, Palstra RJ, Klous P, Grosveld F, Galiart N, de Laat W (2006) Genes Dev 20:2349–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Marko JF, Siggia ED (1997) Mol Biol Cell 8:2217–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wood AJ, Severson AF, Meyer BJ (2010) Nature Rev Genet 11:391

    Article  CAS  PubMed  Google Scholar 

  123. Strunnikov AV, Larionov VL, Koshland D (1993) J Cell Biol 123:1635

    Article  CAS  PubMed  Google Scholar 

  124. Hirano T, Mitchison T (1994) Cell 79:449

    Article  CAS  PubMed  Google Scholar 

  125. Hirano T (2006) Nat Rev Mol Cell Biol 7:311

    Article  CAS  PubMed  Google Scholar 

  126. Haering CH, Farcas A-M, Arumugam P, Metson J, Nasmyth K (2008) Nature 454:297

    Article  CAS  PubMed  Google Scholar 

  127. Cuylen S, Metz J, Haering CH (2011) Nat Struct Mol Biol 18:894

    Article  CAS  PubMed  Google Scholar 

  128. Murayama Y, Uhlmann F (2014) Nature 505:367

    Article  CAS  PubMed  Google Scholar 

  129. Kimura K, Hirano T (1997) Cell 90:625

    Article  CAS  PubMed  Google Scholar 

  130. Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999) Cell 98:239

    Article  CAS  PubMed  Google Scholar 

  131. Carter SD, Sjögren C (2012) Crit Rev Biochem Mol Biol 47:1

    Article  CAS  PubMed  Google Scholar 

  132. Sun M, Nishino T, Marko JF (2013) Nucleic Acids Res 41:6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Strick T, Kawaguchi T, Hirano T (2004) Curr Biol 14:874

    Article  CAS  PubMed  Google Scholar 

  134. Cui Y, Petrushenko ZM, Rybenkov VV (2008) Nat Struct Mol Biol 15:411

    Article  CAS  PubMed  Google Scholar 

  135. Petrushenko ZM, Cui Y, She W, Rybenkov VV (2010) EMBO J 29:1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Meinikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL (2015) Proc Natl Acad Sci USA 112:E6456-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fudenberg G, Imakaev M, Goloborodko A, Abdennnur N, Mirny LA (2016) Cell Rep 15:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hirano T (2005) Philos Trans R Soc Lond B 360:507

    Article  CAS  Google Scholar 

  139. Nasmyth K (2001) Annu Rev Genet 35:673–745

    Article  CAS  PubMed  Google Scholar 

  140. Alipour E, Marko JF (2012) Nucleic Acids Res 40:11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maeshima K, Eltsov M, Laemmli UK (2003) Chromosoma 114:365–375

    Article  Google Scholar 

  143. Goloborodko AA, Marko JF, Mirny LA (2016) Biophys J 110:2162–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Goloborodko AA, Imakaev MV, Marko JF, Mirny L (2016) Elife 5:e14864

    Article  PubMed  PubMed Central  Google Scholar 

  145. Marko JF (2008) Chrom Res 16:469–497

    Article  CAS  PubMed  Google Scholar 

  146. Marko JF (2012) The mitotic chromosome: structure and mechanics, ch. 18. In: Rippe K (ed.) Genome organization and function in the cell nucleus. Wiley-VCH, Weinheim, pp 449–486

    Google Scholar 

  147. X Wang, Brandao HB, Le TB, Laub MT, Rudner DZ (2017) Science 355:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) Science 358:672–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF (2017) Mol Biol Cell 28:1984–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nathan D, Crothers DM (2002) J Mol Biol 316:7–17

    Article  CAS  PubMed  Google Scholar 

  151. Pongor CI, Bianco P, Ferenczy G, Kellermayer R, Kellermayer M (2017) Biophys J 112:512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ, Poirier MG (2011) Proc Natl Acad Sci USA 108:12711–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pommier Y, Leo E, Zhang H, Marchand C (2010) Chem Biol 17:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fisher JB, McNulty M, Burke MJ, Crispino JD, Rao S (2017) Trends Cancer 3:282–293

    Article  PubMed  PubMed Central  Google Scholar 

  155. Spagnol ST, Armiger TJ, Dahl KN (2016) Cell Mol Bioeng 9:268–276

    Article  CAS  PubMed  Google Scholar 

  156. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Science 341:1240104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Davidson PM, Lammerding J (2014) Trends Cell Biol 24:247–256

    Article  CAS  PubMed  Google Scholar 

  158. Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V, Adam SA, Goldman RD, Marko JF (2017) Mol Biol Cell E17-06-0410

    Google Scholar 

  159. Hutchison CJ (2014) Adv Exp Med Biol 773:593–604

    Article  CAS  PubMed  Google Scholar 

  160. Bennett RL, Licht JD (2018) Annu Rev Pharmicol Toxicol 58:187–207

    Article  CAS  Google Scholar 

  161. Banigan EJ, Stephens AD, Marko JF (2017) Biophys J 113:1654–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Borsos M, Torres-Padilla ME (2016) Genes Dev 30:611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mulligan PJ, Koslover EF, Spakowitz AJ (2015) J Phys Cond Mat 27:064109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Marko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brahmachari, S., Marko, J.F. (2018). DNA Mechanics and Topology. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_2

Download citation

Publish with us

Policies and ethics