Skip to main content

Effect of Climate Change on the High-Mountain Tree Species and Their Genetic Resources in Bulgaria

  • Chapter
  • First Online:
Forests of Southeast Europe Under a Changing Climate

Abstract

Climate change have the potential to strongly affect mountain coniferous forests in Bulgaria in several ways: (1) By directly affecting tree growth and the potential of trees to successfully cope with climate extremes; (2) By affecting disturbance events and regimes, which on their turn may trigger further habitat changes; (3) By facilitating migration of better adapted for the new climate condition species, which can outcompete other less adapted species and replace them and (4) By facilitating invasive species. In this chapter we provide data on the distribution of coniferous forests in Bulgarian mountains and short reviews of recent tree ring studies and studies on disturbance regimes. The tree ring data show the high importance of drought and other extreme climate events on high-mountain conifer species. This outlines that expected summer warming and temperature increase have the potential to strongly affect tree growth. The disturbance data shows the high importance of fires and windthrows, but also high number of snow damages and avalanches, which are not to be neglected. Insect outbreaks may be further facilitated if summer temperatures increase and allow species, which are currently limited by colder temperatures in higher altitudes, to affect also forests higher up. All these factors can act together and modify habitat quality and conditions and in this way put in risk species and genotypes with limited distribution and narrow growth niches. It is therefore necessary to take measures for ex-situ conservation of genotypes besides the well developed in-situ conservation in the network of protected areas in Bulgaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov, A., & Dobrev R. (2011). The state of the world’s forest genetic resources. (Country Report Bulgaria, 60 pp). Rome: FAO.

    Google Scholar 

  • Alexandrov, A., & Pandeva, D. (2014). Acer heldreichii. In Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1–6).

    Google Scholar 

  • Alexandrov, A., von Wühlisch, G., & Vendramin, G. G. (2011). Conserving the genetic diversity of Pinus mugo Turra. Silva Balcanica, 12(1), 5–11.

    Google Scholar 

  • Anev, S. (2016). Physiological basis of growth, adaptation and survival. In M. Panayotov, P. Bebi, & S. Yurukov (Eds.), Mountain coniferous forests in Bulgaria – structure and natural dynamics (pp. 79–96). Sofia: University of Forestry ISBN: 978-954-332-146-9.

    Google Scholar 

  • Anev, S., & Tsvetkova, N. (2018). Drought stress in four subalpine species: Gas exchange response and survivorship. Russian Journal of Ecology, 49(5), 422–427.

    Article  Google Scholar 

  • Assyov, B., Petrova, A., Dimitrov, D., & Vassilev, R., 2012. Conspectus of the Bulgarian vascular flora. Distribution maps and floristic elements (4th Revised and enlarged edition, 489 pp). Sofia: Bulgarian Biodiversity Foundation.

    Google Scholar 

  • Bebi, P., Kulakowski, D., & Rixen, C. (2009). Snow avalanche disturbances in forest ecosystems—state of research and implications for management. Forest Ecology and Management, 257, 1883–1892.

    Article  Google Scholar 

  • Bergman, F., & Gagov, V. (2000). Genetische Diversität und Differenzierung von Tannenpopulationen der Balkanhalbinesel. In Proceedings of the 9th International European Silver Fir Symposium in Skopje, Macedonia.

    Google Scholar 

  • Bradford, J. B., Jensen, N. R., Domke, G. M., & D’Amato, A. W. (2013). Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. Forest Ecology and Management, 308, 178–187.

    Article  Google Scholar 

  • Brown, R. D., & Petkova, N. (2007). Snow cover variability in Bulgarian mountainous regions, 1931–2000. International Journal of Climatology, 27(9), 1215–1229.

    Article  Google Scholar 

  • Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., & Zang, C. (2015). Old world megadroughts and pluvials during the Common Era. Science Advances, 1(10), e1500561. https://doi.org/10.1126/sciadv.1500561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobrinov, I., & Yurkov, S. (1986). Studies on the progeny of natural hybrids between Pinus sylvestris and P. mugo. Scientific Works, Higher Institute of Forestry, Series Forestry, 30, 123–138 (in Bulgarian).

    Google Scholar 

  • Doncheva, N., Gagov, V., & Zhelev, P. (2003). Individual heterozygosity distribution in natural Scots pine (Pinus sylvestris L.) populations. Genetics and Breeding, 32(1–2), 61–67.

    Google Scholar 

  • Dountchev, A., & Zhelev, P. (2015). Natural regeneration on the Norway spruce forests after large-scale natural disturbances in Bistrishko branishte reserve, Vitosha Mts. Forestry Ideas, 21(2), 293–305.

    Google Scholar 

  • Dountchev, A., Tsvetanov, N., Zhelev, P., & Panayotov, M. (2014). Challenges for the conservation of the Norway spruce forests in Vitosha Nature Park after large-scale natural disturbances. Ecologia Balkanica, 5, 61–69.

    Google Scholar 

  • Foster, D. R., Knight, D. H., & Franklin, J. F. (1998). Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497–510.

    Article  Google Scholar 

  • Gagov, V., Zhelev, P., Evtimov, I., & Doncheva, N. (2003). Genetic structure of seed production stands and clonal seed orchards of Scots Pine. Project Report. University of Forestry, 145 pp (in Bulgarian).

    Google Scholar 

  • Gömöry, D., Paule, L., Brus, R., Zhelev, P., Tomović, Z., & Gračan, J. (1999). Genetic differentiation and phylogeny of beech on the Balkan Peninsula. Journal of Evolutionary Biology, 12(4), 746–754.

    Article  Google Scholar 

  • Grozev, O., & Nedelchev, N., (1996). Comparative dendrochronological analysis of Austrian pine and Scots pine from the region of western Rhodopes. Scientific works of the University of Forestry, XXXVII, Forestry, 81–88 (in Bulgarian).

    Google Scholar 

  • Grunewald, K., Scheithauer, J., Monget, J.-M., & Brown, D. (2009). Characterisation of contemporary local climate change in the mountains of southwest Bulgaria. Climatic Change, 95(3–4), 535–549.

    Article  Google Scholar 

  • IPCC. (2014). In R. K. Pachauri & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). Geneva: IPCC.

    Google Scholar 

  • Kraus, D., & Krumm, F. (2013). Integrative approaches as an opportunity for the conservation of forest biodiversity. Freiburg: European Forest Institute.

    Google Scholar 

  • Kulakowski, D., & Bebi, P. (2004). Range of variability of unmanaged subalpine forests. Forum für Wissen, 2004, 47–54.

    Google Scholar 

  • Kulakowski, D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T., Panayotov, M., Svoboda, M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., & Bebi, P. (2017). A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 388, 120–131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications, 9(4), 1179–1188.

    Google Scholar 

  • Longauer, R., Zhelev, P., Paule, L., & Gömöry, D. (1992). The mating system, outcrossing rate and genetic differentiation of Scots pine (Pinus sylvestris L.) populations from Bulgaria. Biologia (Bratislava), 47(7), 539–547.

    Google Scholar 

  • Mirchev, P., Georgiev, G. T., Tsankov, G. (2004). Economically important insect pests in the pine forests in Bulgaria. In Proceedings of the Third Symposium on “Deliblato Sands”, Pancevo, Serbia, pp. 223–228.

    Google Scholar 

  • Mirchev, P., Georgiev, G. T., & Matova, M. (2011). Prerequisites for expansion of Pine processionary moth, Thaumetopoea pityocampa (Den. & Schiff.) in Bulgaria. Journal of Balkan Ecology, 14(2), 117–130.

    Google Scholar 

  • Naydenov, K. D., Tremblay, F. M., Bergeron, Y., Alexandrov, A. H., & Fenton, N. (2005). Dissimilar patterns of Pinus heldreichii Christ. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochemical Systematics and Ecology, 33(2), 133–148.

    Article  CAS  Google Scholar 

  • Nojarov, P. (2012). Variations in precipitation amounts, atmosphere circulation, and relative humidity in high mountainous parts of Bulgaria for the period 1947–2008. Theoretical and Applied Climatology, 107(1–2), 175–187.

    Article  Google Scholar 

  • Oliver, C. D., & Larson, B. C. (1996). Forest stand dynamics. New York: Wiley 544 pp.

    Google Scholar 

  • Panayotov, M., & Georgiev, D. (2012). Dynamics in the Ips typographus outbreak following the 2001 windthrow in Bistrishko branishte reserve, Bulgaria. Silva Balcanica, 13(1), 38–48.

    Google Scholar 

  • Panayotov, M., & Yurukov, S. (2007). Tree ring chronology from Pinus peuce in Pirin Mts and the possibilities to use it for climate analysis. Phytologia Balcanica, 13(3), 313–320.

    Google Scholar 

  • Panayotov, M., Bebi, P., Trouet, V., & Yurukov, S. (2010). Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees – Structure and Function, 24(3), 479–490.

    Article  Google Scholar 

  • Panayotov, M., Kulakowski, D., Laranjeiro Dos Santos, L., & Bebi, P. (2011). Wind disturbances shape old Norway spruce forests in Bulgaria. Forest Ecology and Management, 262(3), 470–481.

    Article  Google Scholar 

  • Panayotov, M., Zafirov, N., & Cherubini, P. (2013). Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees - Structure and Function, 27(1), 211–227.

    Article  Google Scholar 

  • Panayotov, M., Bebi, P., Tsvetanov, N., Alexandrov, N., Laranjeiro, L., & Kulakowski, D. (2015). The disturbance regime of Norway spruce forests in Bulgaria. Canadian Journal of Forest Research, 45(9), 1143–1153.

    Article  Google Scholar 

  • Panayotov, M., Kulakowski, D., Tsvetanov, N., Krumm, F., Barbeito, I., & Bebi, P. (2016a). Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. Forest Ecology and Management, 369, 74–88.

    Article  Google Scholar 

  • Panayotov, M., Tsvetanov, N., Gogushev, G., Tsavkov, E., Zlatanov, T., Anev, S., Ivanova, A., Nedelin, T., Zafirov, N., Aleksandrov, N., Dountchev, A., Vasileva, P., Shishkova, V., Stoyanov, B., Sotirova, N., Vatov, A., Bebi, P., & Yurukov, S., 2016b. Mountain coniferous forests in Bulgaria – Structure and natural dynamics. Sofia: University of Forestry, 332 рр. ISBN: 978-954-332-146-9.

    Google Scholar 

  • Panayotov, M., Gogushev, G., Tsavkov, E., Vasileva, P., Tsvetanov, N., Kulakowski, D., & Bebi, P. (2017). Abiotic disturbances in Bulgarian mountain coniferous forests – An overview. Forest Ecology and Management, 388, 13–28.

    Article  Google Scholar 

  • Raev, I., Knight, C., & Staneva, M. (2003). Drought in Bulgaria – A contemporary analogue for climate change – Natural, economical and social aspects of the dry period 1982–1994. Sofia: BAS.

    Google Scholar 

  • Raev, I., Zhelev, P., Grozeva, M., Markov, N., Velichkov, I., Zhiyanski, M., Georgiev, G., Miteva, M., Aleksander A., Trichkov, L., Bardarov, D., & Vasilev, N. (2011). Programme of measures for adaptation of the forests in Republic of Bulgaria and mitigation the negative effects of the climate change on them. Executive Forest Agency, Ministry of Agriculture, Food and Forests.

    Google Scholar 

  • Rangelova, P., & Panayotov, M. (2013). Structure of old-growth Pinus heldreichii forests in Pirin Mountains. Bulgarian Journal of Agricultural Science, 19(2), 273–276.

    Google Scholar 

  • Roussakova, V. (2015a). Green alder (Alnus viridis) mountain brush. In V. Bisserkov (Ed.), Red data book of Bugaria (Natural habitats, Vol. 3, pp. 233–235). Sofia: MoEW and IBER-BAS.

    Google Scholar 

  • Roussakova, V. (2015b). King Boris’s fir (Abies alba subsp. borisii-regis) forests. In V. Bisserkov (Ed.), Red data book of Bugaria (Natural habitats, Vol. 3, pp. 345–346). Sofia: BAS and MoEW.

    Google Scholar 

  • Russkoff, M. (1928). Contribution to the study of damages by insects in our forests. Gorski pregled (Forest review), 11–12, 477–490 (in Bulgarian).

    Google Scholar 

  • Scaltsoyiannes, A., Tsaktsira, M., Pasagiannis, G., Tsoulpha, P., Zhelev, P., Iliev, I., & Rohr, R. (2009). Allozyme variation of European Black (Pinus nigra Arnold) and Scots pine (Pinus sylvestris L.) populations and implications on their evolution: A comparative study. Journal of Biological Research (Thessaloniki), 11, 95–106.

    CAS  Google Scholar 

  • Schelhaas, M.-J., Nabuurs, G.-J., & Schuck, A. (2003). Natural disturbances in the European forests in the19th and 20th centuries. Global Change Biology, 9(11), 1620–1633.

    Article  Google Scholar 

  • Seidl, R., Schelhaas, M.-J., & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9), 2842–2852.

    Article  Google Scholar 

  • Seidl, R., Schelhaas, M.-J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4, 806–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishkova, V., & Panayotov, M. (2013). Climate-growth relationship of Pinus nigra tree-ring width chronology from the Rhodope Mountains, Bulgaria. Bulgarian Journal of Agricultural Science, 19(2), 225–228.

    Google Scholar 

  • Slavov, G. T., & Zhelev, P. (2004). Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Canadian Journal of Forest Research, 34(12), 2611–2617.

    Article  CAS  Google Scholar 

  • Tashev, A., & Tsavkov, E. (2017). Validation of the name Quercus protoroburoides (Fagaceae). Phytotaxa, 308(2), 232–238.

    Article  Google Scholar 

  • Tashev, A., Koev, K., Tashev, N., & Georgiev, S. (2013). New data on the vertical distribution of some arboreal species of the flora in Bulgaria. Forestry Ideas, 19(2), 201–207.

    Google Scholar 

  • Temperli, C., Bugmann, H., & Elkin, C. (2013). Cross-scale interactions among bark beetles, climate change, and wind disturbances: A landscape modeling approach. Ecological Monographs, 83(3), 383–402.

    Article  Google Scholar 

  • Thom, D., & Seidl, R. (2015). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760–781.

    Article  PubMed  Google Scholar 

  • Thom, D., Seidl, R., Steyrer, G., Krehan, H., & Formayer, H. (2013). Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. Forest Ecology and Management, 307, 293–302.

    Article  Google Scholar 

  • Trouet, V., Panayotov, M., Ivanova, A., & Frank, D. (2012). A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (ad 1768–2008). The Holocene, 22(8), 887–898.

    Article  Google Scholar 

  • Vacchiano, G., Maggioni, M., Perseghin, G., & Motta, R. (2015). Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest. Cold Regions Science and Technology, 115, 9–21.

    Article  Google Scholar 

  • Veblen, T. T. (2003). Historic range of variability of mountain forest ecosystems: Concepts and applications. Forestry Chronicle, 79(2), 223–226.

    Article  Google Scholar 

  • Zafirov, N. (2016). Study of the health status of coniferous forests. In M. Panayotov, P. Bebi, & S. Yurukov (Eds.), Mountain coniferous forests in Bulgaria – structure and natural dynamics (pp. 137–150). Sofia: University of Forestry.

    Google Scholar 

  • Zashev, B. (1950). On the biology and ecology of the engraver beetle Ips acuminatus Gyll in Bulgaria. Annuaire of the Agricultural Academy, Faculty of Forestry, 3, 356–361 (in Bulgarian).

    Google Scholar 

  • Zhelev, P., & Slavov, G. T. (2002). Genetic differentiation of Pinus mugo in Bulgaria: Importance for gene conservation. In D. Temniskova (Ed.), Proceedings of the Sixth National Conference of Botany, pp. 467–472 (in Bulgarian).

    Google Scholar 

  • Zhelev, P., & Tsarska, A. (2009). Genetic diversity in the Bulgarian populations of Pinus peuce Grsb. In: D. Noshad, E. W. Noh, J. King, & R.A. Sniezko (Eds.), Breeding and genetic resources of five-needle pines. Proceedings of the Conference 2008 (pp. 10–16). Yangyang: Korea Forest Research Institute.

    Google Scholar 

  • Zhelev, P., Longauer, R., Paule, L., & Gömöry, D. (1994). Genetic structure of indigenous Scots pine populations from Rhodopi Mountains. Nauka za Gorata (Bulgarian Forest Science), 3, 68–76.

    Google Scholar 

  • Zlatanov, T., Elkin, C., Irauschek, F., & Lexer, M. (2017). Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Regional Environmental Change, 17(1), 79–91.

    Article  Google Scholar 

Download references

Acknowledgements

Most of the studies reported in this chapter were performed within the framework of a Swiss-Bulgarian Project “Subalpine forest development in Bulgarian mountain forests under climate change” supported by Swiss National Science Fund (project IZEBZO143109). Part of the study was supported also by the project “Integrated Research on Forest Resilience and Management in the Mediterranean (INFORMED)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momchil Panayotov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panayotov, M. et al. (2019). Effect of Climate Change on the High-Mountain Tree Species and Their Genetic Resources in Bulgaria. In: Šijačić-Nikolić, M., Milovanović, J., Nonić, M. (eds) Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-95267-3_35

Download citation

Publish with us

Policies and ethics