Skip to main content

Formation Mechanism of Ferronickel Alloy Due to the Reaction Between Iron and Nickeliferous Pyrrhotite at 850–900 °C

  • Conference paper
  • First Online:
Extraction 2018

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 121 Accesses

Abstract

A thermal upgrading process by which nickel value can be concentrated in a ferronickel alloy is a possible alternative to treat Sudbury pyrrhotite (Po) tailings with nickel content of 0.5–1.5 wt%. The basis of this process is precipitation of Ni from Po at high temperature once Fe/S ratio in the iron -deficient Po is shifted towards stoichiometric or near stoichiometric FeS (troilite) either by the addition of iron and/or the removal of sulfur . For the iron addition route, the reaction between elemental iron and nickeliferous pyrrhotite to produce ferronickel alloy and Ni-depleted iron sulfide phase plays a critical rule. In this paper, the formation mechanism of ferronickel alloy was investigated using the diffusion couple technique to better understand the nickel diffusion behavior in the iron and sulfide phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezaei S, Liu F, Marcuson S, Muinonen M, Lakshmanan VL, Sridhar R, Barati M (2017) Canadian pyrrhotite treatment: the history, inventory and potential for tailings processing. Can Metall Q 56(4):410–417

    Article  CAS  Google Scholar 

  2. Wells PF, Kelebek S, Burrows MJ, Suarez DF (1997) Pyrrhotite rejection at Falconbridge’s Strathcona mill. In: Processing of complex ores : proceedings of the second UBC-McGill Bi-annual international symposium on fundamentals of mineral processing and the environment, pp 51–62

    Google Scholar 

  3. Conard BR (2013) Processing history at Vale Canada’s (Inco’s) iron ore recovery plant. CIM J 4(2):61–68

    CAS  Google Scholar 

  4. Gordon SC, McDonald AM (2016) A study of the composition, distribution, and genesis of pyrrhotite in the copper cliff offset, sudbury, Ontario, Canada. Can Miner 53(5):859–878

    Article  Google Scholar 

  5. De Villiers JPR, Liles DC, Becker M (2009) The crystal structure of a naturally occurring 5C pyrrhotite from sudbury, its chemistry, and vacancy distribution. Am Miner 94(10):1405–1410

    Article  Google Scholar 

  6. Emmens SH (1892) The constitution of nickeliferous pyrrhotite. J Am Chem Soc 14(10):369–375

    Article  Google Scholar 

  7. Batt AP (1972) Nickel distribution in hexagonal and monoclinic pyrrhotite. Can Miner 11:892–897

    CAS  Google Scholar 

  8. Kerr A, Bouchard A, Truskoski J, Barrett J, Labonte G (2003) The ‘Mill Redesign Project’ at Inco’s Clarabelle mill. CIM Bull 96(1075):58–66

    CAS  Google Scholar 

  9. Tackaberry PD, Lakshmanan VI, Heinrich GW, Collins M, McCready RGL (1992) Biohydrometallurgical leaching of nickel values from Falconbridge pyrrhotite tailings. In: Proceesings of the international symposium on waste processing and recycling in mining and metallurgical industries, pp 193–211

    Google Scholar 

  10. Toguri JM (1975) A review on the methods of treating nickel-bearing pyrrhotite; with special reference to the Sudbury area pyrrhotite. Can Metall Q 14(4):323–338

    Article  CAS  Google Scholar 

  11. Duffy D, Garg S, Washer C, Grammatikopoulos T, Papangelakis V (2015) Mineralogical characterization of Sudbury pyrrhotite tailings: evaluating the bioleaching potential. In: COM 2015, the conference of metallurgists, pp 1–10

    Google Scholar 

  12. Stogran SW, Wiseman ME (1999) Technical evaluation of subaqueous disposal of alkaline, unoxidized, sulfide containing tailings in acidic water. In: Sudbury’95 and ’99 mining and the environment, conference proceedings, pp 829–836

    Google Scholar 

  13. Lawson V, Xu M (2011) Float it, clean it, depress it–consolidating the separation stages at Clarabelle mill. In: Proceedings MetPlant 2011, no August, pp 589–601

    Google Scholar 

  14. THE.STAFF (1956) Development of the inco iron ore recovery process. Trans Can Inst Min Metall Min Soc Nov Scotia 59:201–207

    Google Scholar 

  15. Thornhill PG (1961) The Falconbridge iron ore process. Trans Can Inst Min Metall Min Soc Nov Scotia 64:337–344

    Google Scholar 

  16. UNIDO (1973) An appraisal of some of the direct reduction processes for the production of sponge iron, Brasilia

    Google Scholar 

  17. Liu L, Elliott L, Stogran SW (1997) Subaqueous deposition of tailings in the strathcona tailings treatment system, LR Project No. 7777–111, Final Report, MEND Project PCA-1, Lakefield, Ontario

    Google Scholar 

  18. Tremblay G (1998) Subaqueous tailings disposal: results of the MEND program. In: Case studies on tailings management, ICME; UNEP, pp 32–33

    Google Scholar 

  19. Illis A, Renzoni LS (1975) Thermal concentration of non-ferrous metal values in sulfide minerals. US Patent 4135913, 1975

    Google Scholar 

  20. Sridhar R, Dalvi A, Bakker HF, Illis A (1976) Recovery of nickel from nickeliferous pyrrhotite by a thermal upgrading process. Can Metall Q 15(3):255–262

    Article  CAS  Google Scholar 

  21. Kullerud G (1964) The Fe–Ni–S system. In: Carnegie institution of Washington, year book, vol 63, pp 175–189

    Google Scholar 

  22. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA (2016) FactSage thermochemical software and databases, 2010–2016. CALPHAD Comput Coupling Phase Diagr Thermochem 54:35–53

    Article  CAS  Google Scholar 

  23. Becker M, De Villiers J, Bradshaw D (2010) The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Miner Eng 23(11–13):1045–1052

    Article  CAS  Google Scholar 

  24. Yu D (2014) Fluidized bed selective oxidation and sulfation roasting of nickel sulfide concentrate. University of Toronto

    Google Scholar 

  25. Condit RH, Hobbins RR, Birchenall CE (1974) Self-diffusion of iron and sulfur in ferrous sulfide. Oxid Met 8(6):409–455

    Article  CAS  Google Scholar 

  26. Iii PT, Jr PBB (1964) A thermodynamic study of pyrite and pyrrothite. Geochim Cosmochim Acta 28(5):641–671

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for the study was provided by NSERC (Fund # STPGP 479533-15) and Process Research Ortech Inc. Samples were provided by Glencore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Barati, M., Marcuson, S. (2018). Formation Mechanism of Ferronickel Alloy Due to the Reaction Between Iron and Nickeliferous Pyrrhotite at 850–900 °C. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_33

Download citation

Publish with us

Policies and ethics