Skip to main content

Separation and Purification of Value Metals from Aqueous Chloride Solutions by Solvent Extraction

  • Conference paper
  • First Online:
Extraction 2018

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The demand for elements such as nickel , cobalt , titanium and gold in various applications has increased significantly. Innovation to recover these elements now plays a major role in metallurgical processes as established technologies have challenges in treating the types of ores that are available while meeting the increasingly stricter environmental regulations. Alternative chloride based processes have been developed that can be used to recover the value elements from the available feed stocks with potentially lower environmental impact . Chloride -based hydrometallurgical processes have several advantages, including higher leachability of complex ores/tailings and relative stability of chloro-complexes of the metals. Process Research ORTECH Inc. (PRO) has developed mixed-chloride process flowsheets, where innovative solvent extraction process steps are used for the separation of nickel , cobalt , titanium and gold from their respective chloride solutions. This paper will discuss the potential aqueous chloro-chemistry of these metals and separation reaction mechanisms involved in the solvent extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakshmanan VI, Sridhar R, Chen J, Halim MA, DeLaat R (2014) US Patent 8916116 B2, 23 Dec 2014

    Google Scholar 

  2. Lakshmanan VI, Sridhar R, Halim MA, Chen J, DeLaat R (2014) US Patent 14/1225639, 2 Oct 2014

    Google Scholar 

  3. Onyedika GO, Achusim-udenko C, Nwoko CIA, Ogwuegbu MOC (2012) Chemistry, processes and problems of complex ores utilization: hydrometallurgical options. Int J Chem Sci 10:112–130

    CAS  Google Scholar 

  4. Adham K, Lee C, Small D (2006) Energy consumption for iron chloride pyrohydrolysis: a comparison between fluid beds and spray roasters. In: Dutrizac JE, Riveros PA (eds) Proceedings international symposium 36th annual CIM hydrometallurgical meeting, Montreal, Canada, pp 815–829

    Google Scholar 

  5. Peek EML, Goedhart OF, Van Weert G (1996) Process evaluation of steel pickle liquor pyrohydrolysis in a commercial keramchemie fluid bed reactor. In: Dutrizac JE, Harris GB (eds) Proceedings symposium CIM meeting on iron control in hydrometallurgy, Ottawa, Canada, pp 483–504

    Google Scholar 

  6. Baerhold F, Lebl A, Statrcevic J (2006) Recycling of spent acids and iron via pyrohydrolysis, in iron control technologies. In: Dutrizac JE, Riveros PA (eds) Proceedings symposium 36th annual CIM hydrometallurgical meeting, Montreal, Canada, p 789

    Google Scholar 

  7. Patoine MC, De Mori A, Borowiec K, Coscia C (2002) Pyrohydrolysis of a calcium and magnesium bearing FeCl2 leach liquor. In: Peek E, Van Weert G (eds) Proceeding 32nd annual CIM hydrometallurgical conference, Montreal, Canada, pp 699–712

    Google Scholar 

  8. Christie PG, Lakshmanan VI, Lawson GJ (1976) The behavior of LIX 63 in the extraction of Cu(II) and Fe(III) from chloride media. Hydromet 2:105–115

    Article  CAS  Google Scholar 

  9. Harris GB, Lakshmanan VI, Magee TJ, Sridhar R (2004) Atmospheric chloride leaching of base metal sulfides. In: Proceedings hydro-sulfides, international colloquium on hydrometallurgical processing of copper sulfides, Santiago, Chile, pp 384–398

    Google Scholar 

  10. Harris GB, Lakshmanan VI, Sridhar R (2006) Canadian Patent 2467288, 14 Nov 2006

    Google Scholar 

  11. Harris GB, Lakshmanan VI, Sridhar R, Puvvada G (2007) Canadian Patent 2478516, 11 Dec 2007

    Google Scholar 

  12. Lakshmanan VI, Sridhar R, Halim MA (2013) US Patent 2013/0283976 A1, 31 Oct 2013

    Google Scholar 

  13. Lakshmanan VI, Sridhar R, Harris GB, Puvvada G (2010) US Patent 7803336, 28 Sep 2010

    Google Scholar 

  14. Lakshmanan VI, Sridhar R, Harris GB, Puvvada G (2010) Canadian Patent 2513309, 15 June 2010

    Google Scholar 

  15. Lakshmanan VI, Sridhar R, Roy R, and Ramachandran V (2008) Recovery of value metals from ores by mixed chloride extraction. In: 6th international proceedings symposium: hydrometallurgy 2008, Phoenix, Arizona, pp 895–902

    Google Scholar 

  16. Lakshmanan VI, Sridhar R, Harris GB, Magee J (2004) The Jaguar Nickel Inc. sechol laterite project atmospheric chloride leach process. In: Imrie WP, Lane DM (eds) Charlotte proceedings symposium the minerals, metals and materials society, North Carolina, pp 219–241

    Google Scholar 

  17. Lakshmanan VI, Sridhar R, Rishea M, DeLaat R (2004) US Patent 6699446, 2 Mar 2004

    Google Scholar 

  18. Lakshmanan VI, Sridhar R, Rishea M, DeLaat R (2002) US Patent 6500396, 31 Dec 2002

    Google Scholar 

  19. Lakshmanan VI, Sridhar R, Rishea M, DeLaat R (2002) Canadian Patent 2289967, 2 July 2002

    Google Scholar 

  20. Lakshmanan VI, Harris GB (1994) Hydrometallurgical flowsheets for tomorrow: the role of chemistry in solution purification in impurity control and disposal in hydrometallurgical process. In: Harris GB, Krause E (eds) Proceedings symposium 24th annual hydrometallurgical conference of CIM, Toronto, Ontario, pp 3–16

    Google Scholar 

  21. Lakshmanan VI, Lawson GJ, Nyholm PS (1974) The extraction of copper(II) and iron(III) with kelex 100 from aqueous media containing chloride ions. In: Proceedings international solvent extraction society, vol 2, Lyon, France, pp 1169–1183

    Google Scholar 

  22. Lakshmanan VI, Bhowmick A, Halim MA (2014) Titanium dioxide: production, properties and application. In: Brown J (ed) Titanium dioxide: chemical properties, applications, and environmental effects. Nova Science Publishers Inc., New York, pp 75–130

    Google Scholar 

  23. Lakshmanan VI, Sridhar R, Patel D (2014) WO Patent Application 2014085903 A1, 12 June 2014

    Google Scholar 

  24. Königsberger E, May P, Harris B (2008) Properties of electrolyte solutions relevant to high concentration chloride leaching in mixed aqueous solutions of hydrochloric acid and magnesium chloride. Hydromet 90:177–191

    Article  Google Scholar 

  25. Jansz JC (1983) Estimation of ionic activities in chloride systems at ambient and elevated temperatures. Hydromet 11:13–31

    Article  CAS  Google Scholar 

  26. Cox, M (2004) Solvent extraction in hydrometallurgy. Solvent extraction principles and practice, 2nd edn. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Marcel Dekker Inc., New York, pp 455–506

    Google Scholar 

  27. Cservenyak I, Kelsall GH, Wang W (1996) Reduction of Ti(IV) species in aqueous sulfuric and hydrochloric acids I. Titanium speciation. Electrochem Acta 41: 563–572

    Article  Google Scholar 

  28. Nicol MJ, Fleming CA, Paul R (1987) The chemistry of the extraction of gold. In: Stanley GC (ed) Extraction metallurgy of gold in South Africa, vol 2, Chap 15. SAIMM Publications, Johannesburg, pp 831–899

    Google Scholar 

  29. Agatzini-Leonardou S, Tsakiridis PE, Oustadakis P, Karidakis T, Katsiapi A (2009) Hydrometallurgical process for the separation and recovery of nickel from sulphate heap leach liquor of nickeliferrous laterite ores. Min Engineer 22:1181–1192

    Article  CAS  Google Scholar 

  30. Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: a review. Hydromet 108:100–108

    Article  CAS  Google Scholar 

  31. Shen YF, Xue WY, Niu WY (2008) Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap. Trans Nonferrous Met Soc China 18:1262–1268

    Article  CAS  Google Scholar 

  32. Choi Y, Wang Q, Langhans JR (2013) US Patent 2013/0091990 A1, 18 Apr 2013

    Google Scholar 

  33. Choi Y, Kondos P, Aylmore MG, McMullen J, van Weert G (2009) US Patent 7572317 B2, 11 Aug 2009

    Google Scholar 

  34. Haavanlammi L, Hyvärinen O, Tiihonen M, Tontti R (2011) EP 1984531 B1, 5 Nov 2011

    Google Scholar 

  35. Harris B, White C (2013) US Patent 2013/0220079 A1, 29 Aug 2013

    Google Scholar 

  36. Lalancette JM, Dubreuil B, Lemieux D (2013) US Patent Application 2013/0074655 A1, 28 Mar 2013

    Google Scholar 

  37. Zhang H, Dreisinger D (2003) US Patent number 6632264 B2, 14 October 2003

    Google Scholar 

  38. Lakshmanan VI, Sridhar R, Sheikhzeinoddin T, Halim MA, Roy R (2012) Extraction of titanium and vanadium by chloride leach process. In: Wang S, Dutrizac JE, Free ML, Hwang JY, Kim D (eds) T.T. Chen honorary symposium on hydrometallurgy, electrometallurgy and materials characterization. The Minerals, Metals & Materials Society, Orlando, Florida, USA, pp 295–301

    Google Scholar 

  39. Lee MS, Lee GS, Sohn KY (2004) Solvent extraction equilibria of FeCl3 with TBP. Mat Trans 45:1859–1863

    Article  CAS  Google Scholar 

  40. Olazabal MA, Orive MM, Fernandez LA, Madariaga JM (1992) Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene. Sol Ext Ion Exch 10: 623–635

    Article  CAS  Google Scholar 

  41. Sposito G (1996) The environmental chemistry of aluminum. CRC Press, New York

    Google Scholar 

  42. Wang SL, Wang MK, Tzou YM (2003) Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions. Coll Surf 231:143–157

    Article  CAS  Google Scholar 

  43. Wefers K, Misra C (1987) Oxides and hydroxides of aluminum, Technical paper 19, revised, Alcoa Laboratories

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lakshmanan, V.I., Sridhar, R., Tait, D., deLaat, R., Halim, M.A., Chen, J. (2018). Separation and Purification of Value Metals from Aqueous Chloride Solutions by Solvent Extraction. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_171

Download citation

Publish with us

Policies and ethics